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Abstract—Auditory Attention Detection (AAD) aims to detect
target speaker from brain signals in a multi-speaker environ-
ment. Although EEG-based AAD methods have shown promising
results in recent years, current approaches primarily rely on
traditional convolutional neural network designed for processing
Euclidean data like images. This makes it challenging to handle
EEG signals, which possess non-Euclidean characteristics. In
order to address this problem, this paper proposes a dynamical
graph self-distillation (DGSD) approach for AAD, which does
not require speech stimuli as input. Specifically, to effectively
represent the non-Euclidean properties of EEG signals, dynam-
ical graph convolutional networks are applied to represent the
graph structure of EEG signals, which can also extract crucial
features related to auditory spatial attention in EEG signals.
In addition, to further improve AAD detection performance,
self-distillation, consisting of feature distillation and hierarchical
distillation strategies at each layer, is integrated. These strategies
leverage features and classification results from the deepest
network layers to guide the learning of shallow layers. Our
experiments are conducted on two publicly available datasets,
KUL and DTU. Under a 1-second time window, we achieve results
of 90.0% and 79.6% accuracy on KUL and DTU, respectively.
We compare our DGSD method with competitive baselines, and
the experimental results indicate that the detection performance
of our proposed DGSD method is not only superior to the best
reproducible baseline but also significantly reduces the number
of trainable parameters by approximately 100 times.

Index Terms—Auditory attention detection, electroencephalog-
raphy (EEG), dynamical graph convolutional network, self-
distillation.

I. INTRODUCTION

The cocktail party problem [1], [2] is an intriguing scenario
where multiple speakers’ voices are mixed together, much like
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in a noisy social gathering. The challenge in this problem
arises when multiple sound sources are present simultaneously,
and we need to find a way to separate and extract the sound
source of interest, namely, the target speaker. Multi-speaker
speech separation techniques [3], [4] are used to address the
aforementioned issue. These techniques aim to decompose
mixed speech into different sound sources, allowing us to
individually extract the speech of each speaker. However, these
techniques cannot extract the target speech without the prior
information of the target speaker. To tackle this problem,
auditory attention detection (AAD) [5]–[8] has emerged as
a highly promising solution. AAD is designed to emulate the
”attention” process in the human auditory system using brain
signals. With AAD technology, we can identify and locate
the target speaker, i.e., the speaker who has captured the
listener’s attention in a multi-speaker environment. Hearing-
impaired individuals often struggle to differentiate between
target and interfering sounds in noisy environments due to
their hearing disabilities, leading to communication difficulties
and emotional challenges. Modern hearing aids [9] incorporate
advanced AAD algorithms to assist hearing impaired people in
more accurately capturing target sounds, ignoring background
noise, and enhancing their listening performance in multi-
speaker scenarios.

Electroencephalography (EEG) provides a non-invasive and
low-cost technique. Various studies indicate that using EEG
for AAD is feasible [10]–[15]. AAD relies on extracting
EEG features from the EEG signals, which can be done in
the time domain [16]–[18] and frequency domain. Extracting
EEG features from the frequency domain allows for a more
comprehensive reflection of signal characteristics compared to
the time domain. The extraction of frequency domain features
is used to identify different frequency bands of brainwave
rhythms, such as δ (1-3 Hz), θ (4-7 Hz), α (8-13 Hz), β
(14-30 Hz), and γ (31-50 Hz) [19]–[23]. This helps describe
the spatial characteristics and functional states of the EEG
signals. Subsequently, EEG features can be extracted from
each frequency band, including power spectral density (PSD)
[24], [25] features, rational asymmetry (RASM) [26] features,
differential entropy (DE) [27], [28] features, and so on.

Research on AAD primarily focuses on two paradigms
[9]: speaker identification and tracking spatial attention. The
former requires both EEG signals and clean auditory stimuli
as input [29], [30], while the latter only relies on EEG
signals [15], [31]. In this paper, we focus on models that
use only EEG signals as input, choosing not to use auditory
stimuli for practical reasons. Previous studies [7], [10] often
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use clean stimulus as input, but in real-world environments,
listeners typically receive mixed speech containing voices
from multiple speakers. This makes obtaining clean auditory
stimuli challenging, as models might face various challenges
when dealing with mixed speech, such as speech separation.
Therefore, considering the complexity and feasibility of real-
world applications, we choose not to use this approach to
ensure the practicality and effectiveness of our model in real-
world scenarios.

In recent years, due to findings in neuroscience suggesting
that the brain processes auditory stimuli through nonlinear
mappings [32], traditional linear AAD methods struggle to
handle the nonlinear mappings in the brain, and their decod-
ing performance deteriorates significantly with shorter time
windows [33]. Consequently, research has gradually shifted
towards nonlinear methods based on EEG [9], with convo-
lutional neural networks (CNNs) [15], [31], [34] being the
most commonly used nonlinear approach. When performing
auditory spatial attention detection, selecting an appropriate
method to model EEG signals is of paramount importance.
Unlike Euclidean data such as image pixels, EEG signals
exhibit non-uniform sampling due to the uneven measure-
ment locations on the scalp and varying distances between
electrodes. Additionally, during the data collection process,
electrodes are distributed discretely on the scalp, forming
a discrete electrode network rather than a continuous Eu-
clidean space. The primary reason why CNN is unsuitable
for processing EEG signals is that CNN is designed to handle
Euclidean data, relying on spatial relationships between pixels
during the convolutional kernel sliding process. However,
the non-uniform sampling points and non-Euclidean spatial
characteristics of EEG signals make it challenging to model
such spatial relationships effectively [35]. Relatively speaking,
graph structures can naturally represent these non-uniform
connections, allowing for a better capture of interactions
between different electrodes. They are not constrained by
a fixed grid structure and are better suited to adapt to the
characteristics of EEG signals, thus providing more accurate
feature extraction [36].

In this paper, a novel dynamical graph self-distillation
(DGSD) method is proposed for auditory spatial attention
detection. Initially, dynamical graph convolutional networks
(DGCN) are employed to represent EEG signals with non-
Euclidean features as a graph structure, where each node
corresponds to an electrode location, and the adjacency matrix
represents the connectivity between electrodes. Subsequently,
graph convolution operations within the network are uti-
lized to extract essential features related to auditory spatial
attention. These operations propagate information between
electrodes and dynamically update the feature representation
of electrodes using information from neighboring electrodes.
Additionally, self-distillation methods are integrated, applying
feature distillation and hierarchical distillation strategies after
each layer of graph convolution operations. This involves using
features and classification results from the deepest layer to
guide the learning of shallower layers, further enhancing the
model’s performance.

The main contributions of this paper lie in two aspects.

Firstly, the DGCN is applied to represent EEG signals
with non-Euclidean characteristics and capture crucial fea-
tures related to auditory spatial attention. Secondly, the self-
distillation is integrated to further improve the model’s perfor-
mance, which consists of feature distillation and hierarchical
distillation strategies at each layer. Experiments are conducted
on publicly available datasets from KUL and DTU. The
experimental results demonstrate that the proposed DGSD
approach not only outperforms state-of-the-art reproducible
AAD methods but also significantly reduces the number of
trainable parameters by approximately 100 times.

The rest of this paper is organized as follows. Section II
presents a brief overview of the relevant work related to this
paper. Section III introduces the proposed DGSD method.
The experimental setup is stated in Section IV. Section V
shows experimental results. Section VI shows the discussions.
Section VII draws conclusions.

II. RELATED WORK

A. Nonlinear methods for AAD

Currently, advanced AAD research methods can be catego-
rized into two types. One type is related to spatial localization
detection, such as [15], [31], [37], both of which use EEG
signals as input and employ CNN for spatial feature extraction.
In [31], the authors propose the SSF-CNN method for auditory
spatial attention detection, which combines spectral spatial
features (SSF) constructed by analyzing the topographical
specificity of α band power in EEG with CNN to enhance
detection performance. In [15], the authors found that using
SSF-CNN with only the α band power spectrum couldn’t fully
reflect the spatial information of EEG, so they extracted multi-
band differential entropy features as input to CNN, utilizing
information from different frequency bands in EEG signals to
improve performance. In [37], the authors propose an EEG-
graphs convolutional network that incorporates a neural atten-
tion mechanism. It takes EEG data from a single β frequency
band as input, and this mechanism simulates the topological
structure of the human brain based on the spatial patterns
of EEG signals. The other type is speaker identification,
as in [38]–[40], which uses both EEG signals and auditory
stimuli as input. In [38]–[40], the authors introduce a joint
CNN-LSTM model, which takes EEG signals and stimulus
spectrograms as inputs for identity recognition, improving
performance by capturing long-term dependencies between
EEG responses and auditory stimuli using long short-term
memory (LSTM).

B. Spectral graph filtering

Spectral filtering [43], also known as graph convolution,
is a widely used signal processing technique in graph data
operations. The basic idea is to represent graph data as a
signal in a specific domain, such as the frequency domain or
spectral domain. In these domains, the graph fourier transform
(GFT) [48] can be used for graph signal analysis. Recently,
spectral filtering has been widely applied in graph neural
network (GNN) to form graph convolutional network (GCN)
[41], [42], [44], [49], [50], which can extract features of
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Fig. 1. DGSD model architecture. DGSD consists of four modules :1) EEG data processing, 2) Multi-band DE feature extraction, 3) Graph convolution
operation and 4) Self-distillation. The fusion of the latter two modules is the core of our model. The graph structure is used to represent EEG signals, and
then the graph convolution of each layer is used to extract features about auditory spatial attention from EEG signals, while the features and classification
results of the deepest network are used to guide the learning of the shallow network.

nodes and edges as a convolution operation. In [51], [54], the
authors first propose a domain-based hierarchical clustering
or graph Laplacian spectrum GCN, which can handle signals
on irregular graph structures such as social networks and
brain connectomes. In [23], the authors introduce a dynamical
graph convolutional neural networks (DGCNN) approach that
incorporates GCN into an emotion recognition system based
on multi-channel EEG. This method dynamically learns the
intrinsic relationships between different EEG channels. This
indicates GCN have great potential in extracting features of
discrete spatial domain signals [41].

C. Self-distillation
Self-distillation, as an emerging method, has been applied

in various fields such as speech recognition and computer
vision [45], [46]. In [52], the proposed instance segmentation
network is trained and its detection accuracy is improved by
applying self-distillation. In [53], an elegant self-distillation
mechanism is proposed to directly obtain high-precision mod-
els. In [47], a self-distillation method for fake speech detection
is proposed, which uses the deepest network to guide and
enhance the shallow network, and builds a distillation path
between the features of the deepest and shallow networks
to reduce feature differences. This method can significantly
improve the performance of FSD. These methods demonstrate
that self-distillation, as an effective knowledge transfer and
model training method, has broad application prospects in
different fields and tasks.

III. THE PROPOSED DGSD METHOD

In this section, we introduce our proposed DGSD model.
This method not only effectively represents EEG data with

non-Euclidean characteristics as graph signals but also extracts
crucial features related to auditory spatial attention using
graph convolution operations. Furthermore, by combining with
self-distillation, the model can enhance detection accuracy,
which enables the features and classification results from the
deepest network layer to guide the shallow network learn-
ing through feature distillation and hierarchical distillation
in self-distillation. The framework of our proposed model
is illustrated in Fig. 1, which consists of four modules:
EEG data processing, multi-band DE feature extraction, graph
convolution operation and self-distillation. Next, we provide
detailed descriptions of these modules.

A. EEG data processing & Multi-band DE feature extraction

Many studies use the sliding window method to segment
EEG signals into a series of time periods for performance
analysis of different AAD algorithms [15], [31], [33], [34],
[38]. In this study, we process the data according to the final
frequency of EEG preprocessing for each dataset, and perform
sliding window processing for each subject’s data to extract
multi-band DE features in each time segment.

Next, we perform frequency band decomposition on the
EEG data after sliding window. It is decomposed into five
frequency bands, allowing for a comprehensive description of
the spatial characteristics and functional states of the EEG
signal. We then extract multi-band DE features [27], [55] from
each frequency band. As a result, for the input EEG signal with
64 channels, we obtain a total of 320 DE features, consisting
of 64 channels across the five frequency bands.
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B. Dynamical graph convolution network

The dynamical graph convolutional network (DGCN) rep-
resents EEG signals with non-Euclidean properties as a graph
structure for subsequent graph convolution operations. Then,
it can utilize graph convolution operations to extract important
features related to auditory spatial attention. This network can
obtain more discriminative features by dynamically updating
the adjacency matrix within the graph structure. Further infor-
mation about the dynamic updating of the adjacency matrix
can be found in Section III-C2.

1) Graph representation of EEG signals: At this point,
we can construct a graph G using the outputs of the multi-
band differential entropy extraction module, which serves as
the input for the graph distillation module. In G = {V,W},
V = {v1,v2, . . . ,vN} is the node set where each node vi

corresponds to an electrode and N is the number of electrodes
in the EEG recording equipment. W ∈ RN×N is the adjacency
matrix of G, with non-negative elements wij representing the
strength of functional connection between vi and vj. Each
node is associated with d features, i.e., the feature matrix
x ∈ RN×d of the nodes. Each column of x represents a signal
defined on the node. Our next step is to perform operations
on x.

2) Graph convolution: Specifically, the Laplacian matrix
of graph G = {V,W} is L = D−W (where D is a diag-
onal matrix with elements Dii =

∑N
j=1 wij), its eigenvector

matrix is U = [u1,u2, . . . ,uN] and eigenvalue matrix is
Λ = diag([λ1, λ2, . . . , λN]), which can be obtained through
the singular value decomposition of L, i.e., L = UΛUT.
Then the Fourier transform of x in the graph domain can
be expressed as x̂ = UTx. The graph convolution operator
is defined in the graph domain as:

x ∗ y = U
[
(UTx)⊙ (UTy)

]
(1)

where ⊙ denotes the element-wise Hadamard product.
The key to graph convolution (also known as spectral

filtering) is how to choose the filter g to adjust the Fourier
coefficients of the signal x in the spectral domain, and thus
control the response of the signal at different frequencies.
Typically, the filter g is a diagonal matrix whose diagonal
elements represent the weights at different frequencies, i.e.,
g(Λ) = diag([θ1, θ2, . . . , θN]), where {θi}Ni=1 is the vector of
Fourier coefficients. Therefore, for a signal x that has been
processed by the filter g(L), its Fourier coefficients can be
represented as:

y = g(L)x = g(UΛUT)x = Ug(Λ)UTx (2)

This process can be seen as a convolution operation in the
spectral domain, that is:

y = Ug(Λ)UTx = [Ug(Λ)]⊙ (UTx)

= U{UT [Ug(Λ)]} ⊙ (UTx) = x ∗ [Ug(Λ)]
(3)

where Ug(Λ) is the convolution kernel, called graph convo-
lution operator. In this way, the signal x can be transformed
from the graph spatial domain to the graph spectral domain,
and then convolved with the graph convolution operator, to
obtain the signal y processed by the filter g.

We adopt a similar graph convolution representation as in
[23], which is the graph convolution modified by K-order
Chebyshev polynomials. The convolution kernel formula is as
follows:

g(Λ) ≈
K−1∑
k=0

θkTk(Λ̃) (4)

where θk is the coefficient of the Chebyshev polynomial,
Λ̃ is normalized by Λ. Tk(Λ̃) is the K-order Chebyshev
polynomial used for evaluating Λ̃.

Currently, our graph convolution is capable of extracting
features related to auditory spatial attention. In this module, we
design a 4-layer graph convolution, and each layer of signal x
undergoes graph convolution as xi = xi−1 +DGCN(x,Ai),
where A is an Λ̃ matrix generated by K-order Chebyshev
polynomial. Next, we provide a detailed explanation of our
self-distillation strategy incorporated in the graph convolution
layers and the dynamic updating process of the adjacency
matrix.

C. Self-distillation

To further enhance the AAD detection performance, we in-
corporate the self-distillation method, which consists of feature
distillation and hierarchical distillation after each DGCN layer.
It guides the learning of shallow networks using features and
classification results extracted by the deepest network, thereby
extracting more suitable classification features for the AAD
task.

1) The calculation of the loss composition: We use the
cross-entropy loss function to calculate the loss between the
convolution result of the four-layer graph and the true label.
This loss is the main loss function for classification, expressed
as loss1:

loss1 = CrossEntropy(pn,y) (5)

where pn is the output of the deepest DGCN, with n being
set to 4 in this paper. y is the label of the training dataset.
The process of applying average pooling after each graph
convolution layer to extract task-related essential features can
be described as follows:

Fi = avgpool(conv(xi)) (6)

Utilizing the features extracted from the shallow and deep-
est layers of DGCN, a feature distillation loss is generated
using the L2 function. This loss encourages the shallow-layer
features to adapt to the deepest layer features, while using the
deepest layer features to guide the learning of shallow-layer
features. As shown in Fig. 1, this results in loss2. In this way,
when predicting classification results, the shallow DGCN can
better align with the outcomes of the deepest DGCN. The
calculation formula for loss2 is as follows:

loss2 =

n−1∑
i=1

L2(Fi,Fn) (7)

where Fi is the output feature of each shallow DGCN, and Fn

is the output feature of the deepest DGCN. L2 is the L2 loss
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function. In addition, we design a classifier for x after each
layer of graph convolution, which generates M classification
results for subsequent guidance of the deepest DGCN on the
shallow DGCN in a global sense. It is worth noting that these
classifiers are only used for training and not used in validation
and testing phases. We take the deepest DGCN (i.e., the fourth
layer) as the teacher model and the first three DGCNs as the
student model. Then we use KL divergence to calculate the
hierarchical distillation loss in the teacher-student model, i.e.,
loss3 in Fig. 1, which can obtain the difference between the
two output distributions and better guide the shallow network
in learning features. The calculation formula of loss3 is as
follows:

loss3 =

n−1∑
i=1

KL(pi,pn) (8)

where pi represents the output of each layer in the network
after the fully connected classifier, and KL refers to the KL
divergence function. At this point, the training loss consists
of three components, where α and β are hyperparameters that
balance these three sources of loss. Both hyperparameters have
values between 0 and 1. The final loss is:

loss = αloss1+ (1− α)loss2+ βloss3 (9)

2) Dynamic learning of the adjacency matrix W: We
use the back-propagation (BP) method to iteratively update
network parameters during model training to achieve optimal
or suboptimal solutions. To dynamically learn the optimal
adjacency matrix W of the DGSD model using the BP
method, we must compute the partial derivative of the loss
function with respect to W, which is expressed as follows:

∂loss

∂W
=


∂loss
∂w11

∂loss
∂w12

· · · ∂loss
∂w1N

...
... ∂loss

∂wij

...
∂loss
∂wN1

∂loss
∂wN2

· · · ∂loss
∂wNN

 (10)

where wij denotes the element in the i-th row and j-th
column of W. By applying the chain rule, we can express
the computation of wij as follows:

∂loss

∂wij
= α

∂loss1

∂wij
+ (1− α)

∂loss2

∂wij
+ β

∂loss3

∂wij
(11)

After obtaining the partial derivative of ∂loss
∂W , we can update

the optimal adjacency matrix W using the following rule:

W = (1− ρ)W + ρ
∂loss

∂W
(12)

where ρ is the learning rate hyperparameter we set during
network training.

The detailed DGSD training algorithm is summarized in
Algorithm 1. For the ablation study, we perform it by removing
the feature distillation or hierarchical distillation from the self-
distillation method.

Algorithm 1 Training Algorithm for Optimal DGSD Model
Input: Graph G = {V,W} representing multi-channel

EEG signals associated with multiple frequency bands,
auditory spatial attention labels y corresponding to EEG,
the number of layers of DGSD model m, the number of
Chebyshev polynomial order K, the learning rate ρ;

Output: The optimal adjacency matrix W and the optimal
model parameters of DGSD;

1: Initialize the adjacency matrix W and model parameters;

2: repeat
3: Apply ReLU operation to normalize the elements wij

in W, ensuring wij ≥ 0 for all;
4: Calculate and normalize the Laplacian matrix L;
5: Calculate the Chebyshev polynomials;
6: Extract EEG signal features through each layer of

graph convolutional layers;
7: Using average pooling to extract more representative

EEG features from each layer;
8: Calculate binary classification probabilities using a

fully connected classifier for each layer;
9: Calculate cross-entropy loss (loss1), feature distillation

loss (loss2), and hierarchical distillation loss (loss3)
using Eq. (5), (7), and (8) respectively;

10: Calculate the loss function using Eq. (9);
11: Update W and other model parameters using back-

propagation;
12: until the iterations satisfy the predefined algorithm con-

vergence condition;

IV. EXPERIMENTS

In this section, we present the experimental details of
DGSD. AAD datasets and EEG data preprocessing are briefly
described in Section IV-A and Section IV-B, respectively.
The evaluation metrics are described in Section IV-C, and
implementation details and baseline descriptions are provided
in Section IV-D. Additionally, EEG data and their attention
direction labels are read from two original EEG public dataset
files.

A. AAD Datasets

We validate our proposed method on the following two
publicly available datasets, as shown in Table I, with detailed
information about KUL and DTU available in [56]–[59].

1) KUL dataset: This dataset contains 64-channel EEG
data from 16 subjects, with an equal gender distribution
(half male, half female). The data were recorded using the
BioSemi ActiveTwo system with a sampling rate of 8192
Hz and an electrode layout conforming to the international
10/20 system. Auditory stimuli consisted of four Dutch short
stories narrated by a male speaker. During the experiment,
each subject was instructed to focus their attention on one of
two competing male speakers narrating a story while ignoring
the other. Auditory stimuli were presented at a volume of 60
dB through in-ear headphones and filtered with a low-pass
cutoff frequency of 4 KHz. Each subject completed 20 trials,
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TABLE I
DETAILS OF THE TWO DATASETS.

Dataset
Number of

subjects
EEG duration
(per subject)

Speakers Stimulus language
Direction of

stimulus

KUL 16 48 min Male Dutch short stories ± 90°
DTU 18 50 min Male and female Danish audiobooks ± 60°

each lasting 6 minutes. There were two stimulus conditions:
”HRTF” or ”dry”, resulting in a total of eight trials. Auditory
stimuli were presented from the left at 90° and from the
right at 90° by the two speakers. The presentation order was
randomized across subjects. A total of 8 trials, each lasting
6 minutes, were collected for each subject, resulting in 48
minutes of EEG data. More detailed information about this
dataset can be found in references [56], [57].

2) DTU dataset: This dataset contains 64-channel EEG
data from 18 subjects. The data were recorded using the
Biosemi system with a sampling rate of 512 Hz and an
electrode layout conforming to the international 10/20 system.
Auditory stimuli consisted of Danish audiobooks narrated
by both male and female speakers. During the experiment,
each subject was required to focus on one of two competing
speakers (one male and one female) and ignore the other. To
simulate low-reverberation conditions, the recordings of the
two competing speakers were interfered with by six additional
background speakers (three male and three female). The voices
of the respective two speakers were presented from +60° and
-60° relative to the subject as sound stimuli at a volume of
65 dB using ER-2 insert earphones with a sampling rate of
48 KHz. Each subject completed a total of 60 trials under
three different conditions, with each trial lasting 50 seconds.
Consequently, each subject collected 50 minutes of EEG data.
For more detailed information about this dataset, please refer
to references [58], [59].

B. EEG data preprocessing

Preprocessing of EEG data is different from the EEG data
processing in section III-A. This section refers to a series
of processing and correction of the raw EEG signals, which
can improve the quality of the EEG signals and extract
more effective features. Specifically, for the KUL dataset,
the EEG signals are bandpass filtered from 0.1 Hz to 50
Hz, downsampled to 128 Hz, and then the brainwave data
channels are normalized to ensure zero mean and unit variance
across trials. For the DTU dataset, firstly, the line noise and
harmonics at 50 Hz in the EEG signals are removed. Secondly,
a resampling method based on the fast fourier transform (FFT)
is used to downsample the EEG data to 128 Hz. Then, a joint
decorrelation framework is used to remove eye artifacts, and a
fourth-order forward Butterworth filter is applied to high-pass
filter the EEG data at 1.0 Hz [58]. Finally, each trial’s EEG
data are Z-normalized (also known as Z-score normalization)
to ensure that they have unit variance and zero mean for each
channel. The purpose of this process is to eliminate scale
differences between different channels, allowing all EEG data

from each channel to be compared and analyzed on the same
scale.

C. Evaluation metrics

Since our task involves detecting spatial direction, specif-
ically left/right (i.e., 0/1), we can think of it as a binary
classification task. In our study, we use two evaluation metrics
to evaluate the model, the first is accuracy and standard
deviation, and the second is precision and recall.

1) Accuracy and standard deviation: Paired t-tests are
used to compare the performance differences between two
different models at a significance level of 0.05. The mean
classification accuracy and standard deviation of all subjects
in each dataset are computed under different time windows
(0.5s, 1s, 2s, 5s).

2) Precision and recall: In each dataset, under a chance
level of 50%, precision and recall are calculated for each
subject, followed by the calculation of the mean precision and
recall for all subjects.

D. Implementation details

1) Training, validation and testing: We implement the
entire experiment using Python 3.7.0 and PyTorch 1.12.1.
All experiments are conducted on NVIDIA GeForce RTX
3090 GPU. Our research is evaluated within the subject.
After sliding window processing, the data of each subject is
randomly divided into training, validation and test sets at a
ratio of 8:1:1, and then each subject is trained and tested
separately. The data in each table in the paper is the average
of all subjects in the dataset. The random seed is set to 1111,
batch size is set to 32, and the number of epochs is 200, with
Adam used as the optimizer. To adapt to different datasets, the
learning rates during the training process for KUL and DTU
are set to 0.004 and 0.007, respectively. Two hyperparameters,
α and β, are set to 0.7 and 0.3, respectively.

2) Baselines: We use some baselines to evaluate the perfor-
mance of the DGSD model. In order to ensure the fairness and
validity of the performance comparison, the baseline models
we compare are also tested on multiple datasets in their
respective papers, which guarantees the generalization ability
of the baseline models. All [15], [31] models are open-source
implementations, and we indicate with an asterisk (∗) after the
model name in the experimental results, where our replicated
results are provided before ”/”, and the results reported in
the baseline model papers are provided after ”/”. If there is
only one result, it is the one we have reproduced because
their paper does not contain any experiments on this dataset,
and the baseline models we reproduce is performed under the
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TABLE II
THE PROPOSED MODEL ACHIEVES AAD ACCURACY (%) ON THE KUL DATASET COMPARED TO THE BASELINE. IN THE EXPERIMENTAL RESULTS OF THE

BASELINE MODELS MARKED WITH ”*”, THE VALUE BEFORE ”/” REPRESENTS THE RESULTS WE HAVE REPRODUCED, WHILE THE VALUE AFTER ”/”
REPRESENTS THE RESULTS REPORTED IN THE BASELINE MODEL PAPER. ”-” NOTES THAT THERE ARE NO EXPERIMENTS CONDUCTED ON THIS DATASET

IN THE PAPER.

Dataset Model Use auditory stimuli Time Window

0.5-second 1-second 2-second 5-second

KUL

S-R [10] Yes 53.9 58.1 61.3 67.5
CCA [60] Yes 55.4 59.2 62.4 -
DNN [7] Yes 64.9 70.7 74.5 -

BIAnet [61] Yes 84.1 84.4 88.1 -
CNN [34] No 73.4 80.8 82.1 83.6

NI-AAD [62] No 79.4 82.8 87.1 91.2
SSF-CNN∗ [31] No 80.5 ± 8.34 / - 81.9 ± 9.86 / 81.7 87.3 ± 8.79 / 84.7 91.6 ± 7.40 / 90.5
MBSSFCC∗ [15] No 85.0 ± 7.50 / - 88.8 ± 7.80 / 89.2 90.3 ± 7.62 / 91.5 92.8 ± 5.32 / 93.9

DGSD (ours) No 86.3 ± 7.89 90.3 ± 7.29 93.3 ± 6.53 94.8 ± 4.61

TABLE III
THE PROPOSED MODEL ACHIEVES AAD ACCURACY (%) ON THE DTU DATASET COMPARED TO THE BASELINE. IN THE EXPERIMENTAL RESULTS OF THE

BASELINE MODELS MARKED WITH ”*”, THE VALUE BEFORE ”/” REPRESENTS THE RESULTS WE HAVE REPRODUCED, WHILE THE VALUE AFTER ”/”
REPRESENTS THE RESULTS REPORTED IN THE BASELINE MODEL PAPER. ”-” NOTES THAT THERE ARE NO EXPERIMENTS CONDUCTED ON THIS DATASET

IN THE PAPER.

Time Window
Dataset Model Use auditory stimuli

0.5-second 1-second 2-second 5-second

S-R [10] Yes - 51.8 55.3 -
CCA [60] Yes 51.2 53.5 58.9 -
DNN [7] Yes 56.8 61.7 62.8 -

BIAnet [61] Yes 78.1 79.0 80.6 -
CNN [34] No - 55.9 57.8 58.5

NI-AAD [62] No 60.2 61.6 63.2 61.5
SSF-CNN∗ [31] No 63.3 ± 6.42 / - 64.0 ± 7.21 / - 65.5 ± 7.47 / - 68.4 ± 13.89 / -
MBSSFCC∗ [15] No 71.3 ± 5.84 / - 75.2 ± 7.43 / 76.9 78.7 ± 7.86 / 80.6 80.2 ± 8.64 / 82.9

DTU

DGSD (ours) No 75.6 ± 6.72 79.6 ± 6.76 82.4 ± 6.86 85.6 ± 7.36

same conditions as our model. As the implementation of [7],
[10], [34], [60]–[62] is not yet formally open-sourced, their
performance comes from their original papers, and we do not
mark these results.

V. RESULTS

A. Low-latency DGSD

To evaluate the feasibility of the DGSD model in practical
applications, research is being conducted on the proposed
DGSD model with four different time windows. The detection
accuracy of the DGSD model on two datasets is reported in
Table II and Table III, covering time windows ranging from
relatively short durations of 0.5-second to relatively longer
durations of 5-second. Table IV also presents the metrics
(precision and recall) of the DGSD model for four time
windows on both datasets. Additionally, Fig. 2 illustrates the
performance of the DGSD model with different time windows
for each subject in the two datasets. The horizontal axis is
sorted by subject ID, and the vertical axis represents the
accuracy of auditory spatial attention detection (starting at
60%). It is observed that in the KUL dataset (Fig. 2a) and
the DTU dataset (Fig. 2b).

From Table II, it can be observed that in the KUL dataset,
the DGSD exhibits excellent auditory attention detection per-
formance under 1-second time window (mean: 90.3%, SD:
7.29%), 2-second time window (mean: 93.3%, SD: 6.53%),
and 5-second time window (mean: 94.8%, SD: 4.61%). More-
over, as the time window shortens, the performance of the
DGSD model under the 0.5-second time window (mean:
86.3%, SD: 7.89%) decreases with the reduction of EEG
signal information, but still maintains a very high detection
performance. It can be inferred from the research results that
as the time window increases, the detection accuracy of the
DGSD model significantly improves, which is consistent with
the findings of [15], [61], [62].

From Table III, it can be observed that in the DTU dataset,
the DGSD model achieves average accuracies of 75.6% (SD:
6.72%), 79.6% (SD: 6.76%), 82.4% (SD: 6.86%), and 85.6%
(SD: 7.36%) for time windows of 0.5-second, 1-second, 2-
second, and 5-second, respectively. Similar to the results on
the KUL dataset, the trend in results is consistent, indicating an
improvement in auditory spatial attention detection accuracy
with the increase in time window size.

Table IV also showcases the metrics (precision and recall) of
the DGSD model with four time windows on both datasets. As



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE IV
METRICS (ACCURACY AND RECALL) FOR DIFFERENT TIME WINDOW LENGTHS (0.5-SECOND, 1-SECOND, 2-SECOND, 5-SECOND) IN THE TWO DATASETS.

THE VALUE (%) IN THIS TABLE REPRESENTS THE AVERAGE FOR ALL SUBJECTS IN EACH DATASET.

Dataset Model
Time Window

0.5-second 1-second 2-second 5-second
precision recall precision recall precision recall precision recall

KUL
SSF-CNN∗ [31] 81.5 78.7 82.1 81.8 86.6 89.3 92.5 90.8
MBSSFCC∗ [15] 85.2 84.9 89.1 88.6 90.1 90.9 94.1 91.6

DGSD (ours) 86.8 85.3 89.4 89.3 93.4 93.2 94.6 95.4

DTU
SSF-CNN∗ [31] 63.5 60.2 64.7 58.1 66.6 61.4 69.6 64.9
MBSSFCC∗ [15] 70.9 70.6 73.5 73.2 76.0 80.4 79.1 76.9

DGSD (ours) 71.3 77.0 79.6 78.6 81.2 81.7 83.6 84.1

(a) KUL dataset

(b) DTU dataset

Fig. 2. Detection accuracy (%) of the DGSD model implemented on each subject in the KUL and DTU datasets for different decision time window lengths
(0.5-second, 1-second, 2-second, 5-second). Sort the horizontal axis by the subject IDs. (a) KUL dataset. (b) DTU dataset.

the time window increases, these two metrics also improve. It
can be observed that in the KUL dataset (Fig. 2a) and the DTU
dataset (Fig. 2b), as the time window L increases from 0.5-
second to 5-second, although there are some exceptions, the
detection accuracy of most subjects gradually rises. This sug-
gests that as L becomes longer, more information is captured
in the EEG signals after sliding window processing, allowing
our DGSD model to extract more useful features for auditory
attention detection.

However, a noteworthy observation is that the detection
performance of the DGSD model on the DTU dataset is lower
compared to the KUL dataset, aligning with the findings in
studies [15], [34], [61], [62]. Through a analysis of the publicly
available descriptions of these two datasets, we suggest that

this may be due to the direction of the auditory stimulus or
the gender of the speaker. The primary distinctions between
these datasets are as follows:

1) Directional bias of attention (±90° vs ±60°): In the
DTU dataset, the two auditory stimuli are distributed at ±60°
angles relative to the subjects, while in the KUL dataset, they
are distributed at ±90° angles. Subjects might naturally exhibit
a more pronounced attention bias towards the ±90° direction,
making the auditory stimuli from the KUL dataset potentially
more attention-grabbing and thus yielding higher performance.

2) Gender-related influence (Male & female vs Male): The
auditory stimuli in the DTU dataset are presented by both
male and female speakers, whereas in the KUL dataset, they
are presented only by male speakers. Variations in tone and
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TABLE V
AAD ACCURACY AND STANDARD DEVIATION (%) OBTAINED FROM THE ABLATION STUDY OF LOSS FUNCTIONS ON DGCN.

Dataset Loss Function Time Window

0.5-second 1-second 2-second 5-second

KUL

loss1 (DGCN) 85.1 ± 8.18 89.0 ± 7.22 92.6 ± 6.49 93.8 ± 5.49
loss1 + loss2 85.8 ± 7.49 89.5 ± 7.60 92.2 ± 7.06 93.8 ± 5.82
loss1 + loss3 86.0 ± 8.14 89.5 ± 8.23 92.1 ± 7.49 94.6 ± 5.08

loss1 + loss2 + loss3 (DGSD) 86.3 ± 7.89 90.3 ± 7.29 93.3 ± 6.53 94.8 ± 4.61

DTU

loss1 (DGCN) 73.8 ± 6.95 79.1 ± 7.12 81.3 ± 6.68 83.6 ± 9.26
loss1 + loss2 73.1 ± 8.55 78.9 ± 6.13 81.7 ± 7.48 84.9 ± 6.36
loss1 + loss3 73.0 ± 9.03 78.8 ± 6.36 80.9 ± 6.90 83.7 ± 7.55

loss1 + loss2 + loss3 (DGSD) 75.6 ± 6.72 79.6 ± 6.76 82.4 ± 6.86 85.6 ± 7.36

frequency may exist between male and female voices. The
auditory stimuli from both male and female speakers in the
DTU dataset could possess distinct voice characteristics. This
divergence might impact subjects’ attention biases towards
stimuli of different genders.

Therefore, we consider that researching the DTU dataset
could present more challenges.

B. Ablation study

In order to evaluate the effectiveness of self-distillation
(SD) in our DGSD model, we conduct an ablation study
on the loss functions, investigating the impact of different
combinations of loss functions. During the study, considering
the components of the loss function ”loss” in our approach:
loss1 (cross-entropy loss), loss2 (feature distillation loss), and
loss3 (hierarchical distillation loss), we employ loss1 as the
primary loss and examine the performance when combined
with loss2 or loss3 at specific proportions. Specific results are
shown in Table V. It can be observed that:

1) Only DGCN: When using only DGCN (i.e., using loss1
as the sole loss function), its detection accuracy across differ-
ent time windows surpasses the baseline models in Table II
and Table III. This suggests that the DGCN can suit to use
graph structure to represent with a nature of non-Euclidean
EEG signals, and can effectively extract and utilize the feature
information in EEG signals, resulting in higher detection
accuracy.

2) Combination of loss functions: From experimental
results, it can be seen that combining loss1 with either of the
other two loss functions has little impact on detection accuracy.
However, when all three loss functions are combined propor-
tionally, our DGSD model outperforms DGCN by approxi-
mately 1%. This indicates that the combination of the three
loss functions is the optimal choice for the task, as they col-
laborate to provide enhanced performance and effectiveness.
The experimental results show that our SD approach, which
combines feature distillation and hierarchical distillation, pays
more attention to the multi-level representation of features and
labels, and can use the features and classification results of the
deepest network to guide the learning of shallow networks, so
that shallow networks are more helpful to extract the features
of auditory spatial attention and get the correct classification

results. It is helpful to improve the classification accuracy of
auditory attention detection.

C. Selection of hyperparameters

Studies show that it takes approximately 1-second to 2-
second for a normal person to shift attention to another
speaker [63]. Therefore, suitable parameter combinations for
Equation 9 are being sought through parameter tuning of
hyperparameters α and β within 1-second to 2-second time
windows to achieve optimal detection accuracy. The accuracy
(%) under 1-second and 2-second time windows for different
parameter combinations is depicted in Fig. 3, and extensive
experiments are conducted by separately fixing the values of
α and β to obtain these results. Overall, these experiments can
be classified into two types:

1) α = 0.7: On the KUL dataset (Fig. 3a) and the DTU
dataset (Fig. 3c), we fix α at 0.7 and vary the value of β.

2) β = 0.3: On the KUL dataset (Fig. 3b) and the DTU
dataset (Fig. 3d), we fix β at 0.3 and vary the value of α.

It can be seen that, regardless of the subfigure, the detection
accuracy of the two datasets in the 1-second and 2-second
time windows reaches the optimum when α is 0.7 and β is
0.3. This indicates that our model can effectively utilize spatial
information (both local and global) in EEG signals for auditory
attention detection under the above-mentioned hyperparameter
settings.

VI. DISCUSSION

We believe that our proposed DGSD model not only ef-
fectively represents the channels of EEG signals but also
adeptly extracts and classifies the relevant auditory attention
information within the EEG signals. In this section, we begin
by comparing the performance of our proposed DGSD model
with models incorporating auditory stimuli. Subsequently, we
also compare its performance with models without auditory
stimuli, as depicted in Table II and Table III. Moreover, regard-
ing the reproduction of state-of-the-art open-source models,
namely SSF-CNN [31] and MBSSFCC [15], we analyze the
precision and recall of these models in comparison with the
DGSD model under various time windows for the KUL and
DTU datasets, as presented in Table IV. We further analyze
the trainable parameter counts of the aforementioned models
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(a) α = 0.7 (b) β = 0.3

(c) α = 0.7 (d) β = 0.3

Fig. 3. In two public datasets (KUL, DTU), the impact of different parameter combinations on accuracy (%). Fig. 3a and Fig. 3c depict the accuracy under
varying values of β when α is set to 0.7. Fig. 3b and Fig. 3d illustrate the accuracy under different values of α when β is fixed at 0.3. (a) α = 0.7. (b) β =
0.3 (c) α = 0.7. (d) β = 0.3.

as well as our DGSD model, which are detailed in Table VI.
Lastly, we provide an interpretation of the results from our
conducted ablation experiments on the loss functions. These
experimental outcomes are available in Table V.

A. Performance comparison

1) DGSD vs Models (use auditory stimuli): We compare
the DGSD model with models that utilize auditory stimuli,
which are models with ”Use auditory stimuli” values set to
”Yes” in Table II and Table III (S-R [10], CCA [60], DNN
[7], BIAnet [61]). The results for these models are derived
from their respective papers, where a ”-” indicates that the
experiment for that specific time window is not conducted in
the model paper. While this comparison is conducted under
different AAD paradigms, their objectives are the same — to
identify and enhance auditory stimuli that the listener pays
attention to, while attenuating other auditory stimuli that the
listener neglects.

From Table II, we observe that on the KUL dataset, DGSD
accuracy (mean 0.5-second: 86.3%, mean 1-second: 90.3%,
mean 2-second: 93.3%) for time windows of 0.5-second, 1-
second, and 2-second significantly surpasses other models us-
ing auditory stimuli. Compared to the state-of-the-art auditory
stimulus model, BIAnet (mean 0.5-second: 84.1%, mean 1-
second: 84.4%, mean 2-second: 88.1%), the DGSD model

achieves an average accuracy improvement of 2.2%, 5.9%,
and 5.2% respectively. From Table III, the effectiveness of
the model is also verified on the DTU dataset. Although the
DGSD model’s accuracy is lower than BIAnet for the 0.5-
second time window, it outperforms the BIAnet model for the
1-second and 2-second time windows.

The experimental results demonstrate that our proposed
DGSD model can achieve higher AAD accuracy without
utilizing auditory stimuli, making it more suitable for real-life
scenarios.

2) DGSD vs Models (do not use auditory stimuli): We
compare models that share the same AAD paradigm with the
DGSD model. These models do not require auditory stimuli
as inputs, which is more aligned with practical applications.
The models not using auditory stimuli are those listed with
”Use auditory stimuli” values set to ”No” in Table II and Ta-
ble III (CNN [34], NI-AAD [62], SSF-CNN [31], MBSSFCC
[15]), where the results for CNN and NI-AAD models are
derived from their respective papers. We focus on comparing
the DGSD model with the state-of-the-art open-source SSF-
CNN and MBSSFCC models that we have reproduced. The
comparison is structured as our experiment results followed
by the results from the respective papers.

The results of this comparison on the KUL dataset can be
seen in Table II (p <0.001). In the 1-second time window,
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TABLE VI
THE TRAINABLE PARAMETER COUNTS OF OUR PROPOSED DGSD MODEL

AND TWO SUPERIOR BASELINE MODELS ARE BEING PRESENTED. ”M”
REPRESENTS THE ”MILLION” SCALE IN NUMERICAL MAGNITUDE, WHICH

IS EQUIVALENT TO 106 .

Model Trainable parameters

SSF-CNN∗ [31] 4.21M
MBSSFCC∗ [15] 16.87M

DGSD (ours) 0.15M

the DGSD model achieves significantly higher detection ac-
curacy (mean: 90.3%, SD: 7.29%) compared to SSF-CNN and
MBSSFCC models, with average improvements of 8.4% and
1.5% respectively. In the 2-second time window, the DGSD
model’s detection accuracy (mean: 93.3%, SD: 6.53%) is on
average 6.0% and 3.0% higher than SSF-CNN and MBSS-
FCC. Similarly, the validation on the DTU dataset, as shown
in Table III (p <0.001), demonstrates that in the 1-second
time window, the DGSD model achieves significantly higher
detection accuracy (mean: 79.6%, SD: 6.76%) compared to
SSF-CNN and MBSSFCC models, with average improvements
of 15.6% and 4.4% respectively. In the 2-second time window,
the DGSD model’s detection accuracy (mean: 82.4%, SD:
6.86%) is on average 16.9% and 3.7% higher than SSF-CNN
and MBSSFCC.

It is evident that even without the use of auditory stimuli,
our DGSD model achieves optimal classification detection
results. This outcome underscores the effectiveness of our
model in auditory spatial attention detection. Additionally,
we compute the precision and recall of DGSD, SSF-CNN,
and MBSSFCC under different time windows, as shown in
Table IV. Across different time windows, the DGSD model
outperforms SSF-CNN and MBSSFCC models on both met-
rics. This shows that the DGSD model is more accurate
than the other two models in predicting the left-right spatial
direction.

Finally, we compare the trainable parameter counts of the
proposed DGSD model, SSF-CNN, and MBSSFCC. As shown
in Table VI, the DGSD model achieves higher classification
accuracy compared to SSF-CNN and MBSSFCC models,
while requiring approximately 28 times fewer parameters than
SSF-CNN and 100 times fewer parameters than MBSSFCC.
This indicates that under the same setting, our model offers
faster training speed and reduced storage requirements. This
suggests that our DGSD method is more suitable for practical
applications such as hearing AIDS, as it is faster at the same
time with high accuracy.

B. Analysis of Self-distillation

Our self-distillation consists of feature distillation and hier-
archical distillation. As indicated by Table V, when using only
feature distillation (loss2) or hierarchical distillation (loss3)
individually, the model performance is moderate. However,
when they are combined, the effect improves. We believe this
outcome is due to the following reasons:

1) loss1 is combined with loss2/loss3: When using fea-
ture distillation alone, since there is no label assistance, the
extracted features related to auditory attention may not neces-
sarily be what we desire. When using hierarchical distillation
alone, as it lacks the support of features, the obtained labels
may not be desirable.

2) loss1 is combined with loss2 and loss3: The combi-
nation of both compensates for their respective shortcomings.
Feature distillation, through multi-level feature propagation,
corrects inaccurate labels that hierarchical distillation might
produce. The labels obtained from hierarchical distillation ef-
fectively guide feature distillation, emphasizing the extraction
of features related to auditory attention direction.

VII. CONCLUSION

This paper introduces a DGSD model that combines self-
distillation with dynamic graph convolutional networks. This
model does not require auditory stimuli as input and relies
solely on EEG signals for auditory spatial attention detection,
making it more practical in real-world scenarios. Further-
more, the DGSD model effectively extracts crucial feature
information related to auditory spatial attention from the
EEG signals, with the self-distillation strategy enhancing the
detection performance. The experimental results show that
the DGSD model not only outperforms the linear model,
but also outperforms the advanced reproducible nonlinear
model while reducing the number of trainable parameters
by about 100 times, demonstrating the effectiveness of our
model in detecting auditory spatial attention. In summary,
our DGSD model enhances the performance of EEG-based
auditory attention detection and opens up endless possibilities
for the development of various hearing devices in the future.
Our research is conducted based on within-subject, and there is
a lack of cross-subject research. Future work will be extended
to cross-subject studies, which will help verify the consistency
and robustness of the model.
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