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A B S T R A C T

The rhythm of bonafide speech is often difficult to replicate, which causes that the fundamental frequency
(F0) of synthetic speech is significantly different from that of real speech. It is expected that the F0 feature
contains the discriminative information for the fake speech detection (FSD) task. In this paper, we propose a
novel F0 subband for FSD. In addition, to effectively model the F0 subband so as to improve the performance
of FSD, the spatial reconstructed local attention Res2Net (SR-LA Res2Net) is proposed. Specifically, Res2Net
is used as a backbone network to obtain multiscale information, and enhanced with a spatial reconstruction
mechanism to avoid losing important information when the channel group is constantly superimposed. In
addition, local attention is designed to make the model focus on the local information of the F0 subband.
Experimental results on the ASVspoof 2019 LA dataset show that our proposed method obtains an equal error
rate (EER) of 0.47% and a minimum tandem detection cost function (min t-DCF) of 0.0159, achieving the
state-of-the-art performance among all of the single systems.
1. Introduction

Automatic speaker verification (ASV) technology has become in-
creasingly mature, but it remains vulnerable to attack by existing
synthetic speech techniques. Generally, fake speech can be divided into
three types: audio playback (Ali, Sabir, & Hassan, 2021; Fan, Ding,
Yi, Li & and Lv, 2023; Fan, Zhang et al., 2023; Hajipour, Akhaee, &
Toosi, 2021; Kinnunen, Sahidullah et al., 2017; Kinnunen et al., 2017;
Paul, Das, Sinha, & Prasanna, 2016; Shang & Stevenson, 2008), text-
to-speech (TTS) (Huang, Lin, Liu, Chen, & Lee, 2022; Shchemelinin,
Vadim, & Simonchik, 2013; Zhang, Gu, Yi, & Zhao, 2022), and voice
conversion (VC) (Chen, Kumar, Nagarsheth, Sivaraman, & Khoury,
2020; Kinnunen et al., 2012; Tian, Lee, Wu, Chng, & Li, 2017). To
reduce the risk of spoofing attacks on ASV caused by fake audio, the
ASVspoof challenges have been held successively in 2015 (Wu et al.,
2015), 2017 (Kinnunen, Sahidullah et al., 2017), 2019 (Todisco et al.,
2019), and 2021 (Yamagishi et al., 2021). In 2022, the Audio Deep
Synthesis Detection (ADD 2022) (Yi et al., 2022) was also successfully
held. The ASVspoof challenge has two sub-challenges, one is logical
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1 Proposed by the ASVspoof challenge, it is a scenario for the study of fake speech detection.
2 Proposed by the authors of Witkowski, Kacprzak, Zelasko, Kowalczyk, and Galka (2017), and derived by the LPCC.

access (LA)1 attacks using TTS and VC algorithms, and the other is
physical access (PA) attacks using audio playback. The research in this
paper focuses on LA attacks. Currently, the main focus of research in
fake speech detection (FSD) lies in the design of front-end features and
back-end models.

For front-end features, many acoustic features are investigated (Das,
Yang, & Li, 2019; Doan, Nguyen-Vu, Jung, & Hong, 2023; Fan et al.,
2023; Huang, Cui, Huang, & Kang, 2023; Li, Wang, He, Abdullahi,
& Li, 2022; Paul, Pal, & Saha, 2017; Wei, Long, Wei, & Li, 2022;
Williams & Rownicka, 2019; Yang & Das, 2020; Yang, Das, & Zhou,
2019b), such as Mel Frequency Cepstral Coefficients (MFCC), constant
Q cepstral coefficients (CQCC), linear frequency cepstral coefficients
(LFCC) and so on. In addition, in Witkowski et al. (2017), it is proposed
to use Inverse MFCC (IMFCC), Linear Prediction Cepstral Coefficients
(LPCC), and LPCCres2 features. Then, the high-frequency components
of these three features are fed to a classifier that classifies real samples
and replayed samples. In Chettri, Kinnunen, and Benetos (2020), it is
proposed to divide the whole frequency band into multiple disjoint sub-
bands. A joint subband modeling architecture is designed to learn the
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Fig. 1. The spectrum and F0 distribution of three different types fake speech and the
corresponding bonafide speech. Where the red line means the distribution of F0. A13,
A14 and A15 denote three different TTS algorithms drawn from the ASVspoof 2019 LA
dataset, as described in Wang et al. (2020). The F0 distribution of these three different
types of fake speech is distinctly different from the corresponding bonafide speech. This
indicates that the F0 feature contains the discriminative information for the FSD task.

specific features of subbands. In Zhang, Wang and Zhang (2021), it is
proposed to divide the log power spectrogram (LPS) feature frequency
band into two frequency bands, namely high frequency and low fre-
quency. Based on the results of the experiments, low frequency has
superior performance to high frequency. While these methods make
significant advances in FSD and demonstrate that different frequency
bands have different effects, they do not specify how the bands should
be divided.

For back-end models, deep neural network (DNN) (Jung et al.,
2022; Kim & Ban, 2023; Liu, Zhang, & Gao, 2024) classifiers can
acquire impressive results for FSD task. The ResNet (He, Zhang, Ren,
& Sun, 2016; Xue et al., 2023) architecture, which has been success-
ful in the image field (He, Xu, Zhang, & Zhu, 2023; Sun, Ding, &
Guo, 2022), has strong feature capture capabilities. Therefore, in Ling,
Huang, Huang, Zhang, and Li (2021), Zhang, Jiang and Duan (2021),
Zhang, Wang et al. (2021), authors propose a series of ResNet-based
classifiers to detect fake speech. To further enhance the generaliza-
tion capability of the model, Gao et al. (2019) propose the Res2Net
structure, which partitions channels into multiple groups and enables
interaction through residual connections within each group to extract
multi-scale features. Consequently, researchers (Li et al., 2021; Li,
Wu, Lu, Liu & Meng, 2021) have made many beneficial attempts to
use the Res2Net architecture for the FSD task. However, the residual
connections directly add information from the previous channel group
to the next, and research (Li, Wu et al., 2021) has shown that the cross-
channel information can generate redundant information. Therefore,
after aggregating information from multiple channel groups in Res2Net,
the salient discriminative features may be interfered with by redundant
information. These issues limit the performance of the FSD system.

Recent research in text-to-speech (TTS) has indicated that the fun-
damental frequency (F0) is very important for the quality of synthetic
speech. For example, in Łańcucki (2021), a new TTS model Fastpitch is
proposed to predict the F0 contour during inference. Changed predic-
tions make the generated speech more human-like. The field of Voice
Conversion (VC) is also extensively exploring how to better model
F0 when synthesizing speech. For example, in Qian, Jin, Hasegawa-
Johnson, and Mysore (2020), the authors improve the autoencoder,
which could better generate F0 contours consistent with the target
speaker, as a way to significantly improve speech quality. However, it
is worth noting that the rhythm of bonafide speech is often difficult
2

Fig. 2. The frequency of F0 distribution in the ASVspoof 2019 LA training dataset.
Where the abscissa is the frequency corresponding to F0, and the ordinate is the number
of F0 at this frequency.

to replicate, which leads to the F0 of synthetic speech being very
different from the F0 of real speech. To compare the F0 distribution
of fake speech and bonafide speech, Fig. 1 shows the spectrum and F0
distribution of three different fake voices and one bonafide speech, with
the red line depicting the distribution of F0. From Fig. 1 we can find
that the F0 distribution of these three different types of fake speech
is distinctly different from the corresponding bonafide speech. This
indicates that the F0 feature contains the discriminative information
for the FSD task.

Unfortunately, F0 is difficult to model directly as a valid feature
for FSD. To make full use of the discriminative information of F0,
this paper proposes an F0 subband for FSD task, which is the sub-
band of amplitude spectrum. Fig. 2 shows the F0 distribution in the
ASVspoof 2019 LA training dataset. From Fig. 2 we can find that most
of the F0 is distributed between 0–400 Hz. Therefore, the frequency
band containing most of the F0 is used as the F0 subband. Overall,
compared to other acoustic features, the F0 subband contains a priori
discriminative information, which avoids interference from redundant
information. In addition, to effectively model the F0 subband, we
propose a novel spatial reconstructed local attention Res2Net (SR-LA
Res2Net) for FSD. Specifically, the Res2Net is used as the backbone
network, which can capture the multi-scale information of the input
feature. However, the gradual superposition of cross-channel group
information will cause more artifacts to the spatial structure of the
feature, and the redundant information generated by aggregation may
obscure some important information. To address these problems, we
design a spatial reconstructed (SR) block at the residual connection in
Res2Net, which is used to reconstruct the spatial structure. Finally, the
local attention (LA)3 block is integrated at the bottom of Res2Net to
focus on local information and capture the discriminative information
of the F0 subband.

The main contributions of this study can be summarized as two-
fold. Firstly, we propose to use the F0 subband for the FSD task,
which is a very discriminative feature. Secondly, a novel SR-LA Res2Net
architecture is designed to model the F0 subband, which can effectively
solve the shortcomings of Res2Net when expanding feature receptive
fields. The experimental results on the ASVspoof 2019 LA dataset show
that our proposed method is very effective for the FSD task, and it
can acquire the state-of-the-art performance among all of the single
systems.

The rest of this article is arranged as follows. Section 2 introduces
the related works. The proposed method is introduced in Section 3.

3 The module embedded in the Res2Net architecture proposed in this paper.
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Experiments and results are given in Section 4. Section 5 shows the
discussions. Section 6 draws conclusions.

2. Related works

For the FSD task, many studies (Chettri et al., 2020; Yang, Das, & Li,
2019a; Zhang, Yi & Zhao, 2021) have shown that different frequency
bands have different effects. In Zhang, Wang et al. (2021), the authors
focus on global channel attention using squeeze and extraction blocks
and explore the impact of high frequency and low frequency subband
for the FSD task. The low frequency subband achieves good perfor-
mance. In Ling et al. (2021), the authors propose a frequency attention
block and a channel attention block, which pay attention to the basic
subband correlation and channel relationship, respectively.

In addition, many studies (Jung et al., 2022; Lv, Zhang, Tang, & Hu,
2022; Tak et al., 2021; Tak, weon Jung, Patino, Todisco & Evans, 2021)
are based on the Res2Net for FSD and acquire quite good performances.
In Li et al. (2021), the authors use Res2Net to enhance the system’s
generalization to unseen spoofing attacks and integrate squeeze and
extract blocks to further improve performance. In Li, Wu et al. (2021),
the authors propose a channel-wise gated Res2Net (CG-Res2Net), which
dynamically adjusts the correlation between channels through a gating
mechanism and suppresses channels with small correlations. It fur-
ther enhances the generalization ability of the system against unseen
spoofing attacks.

In this paper, we propose the F0 subband and SR-LA Res2Net for
FSD. Compared with Res2Net and CG-Res2Net, the proposed SR-LA
Res2Net has better generalization ability.

3. The proposed F0 subband with SR-LA Res2Net

In this paper, we propose an F0 subband with SR-LA Res2Net
for FSD. Because the F0 of synthetic speech is very different from
the real one. Therefore, we think the F0 contains the discriminative
information and apply the F0 subband as the input feature for FSD.
To further improve the performance of FSD, we propose the SR-LA
Res2Net to model the F0 subband feature, which can effectively solve
the shortcomings of Res2Net when expanding feature receptive fields.

3.1. F0 subband

To make full use of the discriminative information of F0, we extract
the F0 subband based on the LPS. Specifically, the short-time Fourier
transform (STFT) is used to convert the time domain raw waveform
𝐱[𝑘] into the time–frequency (T–F) domain.

𝑿r[𝑡, 𝑓 ] + 𝑗 ⋅𝑿i[𝑡, 𝑓 ] = 𝑆𝑇𝐹𝑇 (𝐱[𝑘]) (1)

where 𝑘 is the time index of raw waveform 𝐱[𝑘]. 𝑆𝑇𝐹𝑇 means the
operation of STFT. 𝑿r ∈ R𝐹×𝑇 and 𝑿i ∈ R𝐹×𝑇 are the corresponding
real and imaginary part of STFT, respectively. 𝑡 is the index of time
frame and 𝑓 is the index of frequency bin. 𝐹 and 𝑇 are the number of
frequency bins and time frames, respectively. For convenience, (𝑡, 𝑓 ) is
omitted from the following formulas in this paper.

The full frequency bands of 𝑳𝑷𝑺full can be acquired as follows:

𝑳𝑷𝑺full = log
√

(𝑿r)2 + (𝑿i)2 ∈ R𝐹×𝑇 (2)

From Fig. 2 we can find that most of the F0 is distributed between
0–400 Hz. Therefore, the 0–400 Hz of LPS is applied as our F0 subband
𝑳𝑷𝑺F0.

𝑳𝑷𝑺F0 = 𝑳𝑷𝑺0−400 Hz (3)

3.2. Model architecture

To effectively model the F0 subband and improve the performance
of FSD, we propose the SR-LA Res2Net architecture. Fig. 3 shows the
3

schematic diagram of the proposed SR-LA Res2Net architecture. Firstly,
to extract the multi-scale information of the F0 subband, the Res2Net is
used as the backbone. However, when the channel group is constantly
superimposed, the Res2Net may generate redundant information so
that much important information may be lost. To address this issue,
the SR block is proposed at the residual connection between channel
groups, which can restore the spatial structure. In addition, an LA block
is designed at the bottom of Res2Net to pay attention to local infor-
mation and remove the influence of redundant information. Therefore,
our proposed SR-LA Res2Net can further remove spatial artifacts and
redundant information while extracting multi-scale features, thereby
improving the generalization ability of the model to unseen spoofing
attacks.

3.2.1. The res2net architecture
The ResNet has been applied in various fields as soon as it was

proposed and has achieved great performance. Even if ResNet’s residual
connections can reduce the impact of network depth, just increasing
the network depth does not improve the performance of the model
very well. So Gao et al. (2019) proposed the Res2Net architecture,
which obtains multi-scale features through the information transfer of
channel groups. Firstly, to expand the range of interaction between
channel groups, the input features are divided into 𝑛 subsets according
to the channel dimension after 1 × 1 convolution, denoted as 𝑠𝑖, where
𝑖 ∈ {1, 2,… , 𝑛}. As for 𝑠1, it does not undergo any processing. As for
𝑠2, it is directly output after a 3 × 3 convolution 𝐾2(⋅). As for 𝑠3 to 𝑠𝑛,
each 𝑠𝑖 needs to be added to the output of 𝐾𝑖−1 before passing through
𝐾𝑖(⋅). This process can be formulated as follows:

𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑠𝑖, 𝑖 = 1
𝐾𝑖

(

𝑠𝑖
)

, 𝑖 = 2
𝐾𝑖

(

𝑠𝑖 + 𝑦𝑖−1
)

, 3 ≤ 𝑖 ≤ 𝑛

(4)

where 𝑛 is defined as the scale dimension, indicating the number of
channel groups applied to split feature maps.

Therefore, the Res2Net can increase the interaction between chan-
nel groups through residual connections in the block. Through the
residual connections in the block, each channel group obtains a dif-
ferent amount of information, thereby it can generate multiple-scale
features. Such a multi-scale representation increases the receptive field.
Finally, all channel groups are aggregated and the original channel size
is maintained by the 1 × 1 convolution.

3.2.2. Spatial reconstructed block
The Res2Net has a strong feature representation ability, which

relies on the information transfer of multiple internal channel groups.
However, as the feature information continues to be superimposed,
more artifacts will appear in its spatial structure. This greatly affects
the performance of the Res2Net model. Inspired by Woo, Park, Lee, and
Kweon (2018), we design a SR block for residual connection between
channel groups. It aims to reconstruct the feature space and remove its
artifacts when the information is passed to the next channel group.

Firstly, to reduce subsequent parameter computations, we compress
the channel dimension:

Mean ∈ R1×𝐹×𝑇 = Mean
(

in ∈ R𝐶×𝐹×𝑇 ) (5)

where Mean(⋅) means the mean operation, in is the input feature, and
𝐶 is the number of channels.

Then, to further expand the receptive field, the depth-wise dilation
convolution is applied:

DW-DC ∈ R1×𝐹×𝑇 = DW−DC
(

Mean ∈ R1×𝐹×𝑇 ) (6)

where DW−DC represents the operation of depth-wise dilation convo-
lution.

Finally, DW-DC ∈ R1×𝐹×𝑇 reconstructs the feature space through the
sigmoid layer. Then it multiplies with the input feature in:

 ∈ R𝐶×𝐹×𝑇 =  ⊗ sigmoid
(

 ∈ R1×𝐹×𝑇 ) (7)
sr in DW-DC
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Fig. 3. The schematic diagram of the proposed SR-LA Res2Net architecture. The spatial reconstructed (SR) block is used to remove the spatial structure artifacts of the channel
group, and the local attention (LA) block aims to highlight important information and remove redundant information.
where sr represents the reconstructed feature space. ⊗ denotes the
element-wise multiplication.

3.2.3. Local attention block
Although Res2Net can obtain multi-scale global information, due to

the uneven interaction information between the channel groups, this
uneven global interaction may lead to information redundancy and
the useful information may not be focused. To address this problem,
motivated by Wang, Wu, Zhu, Li, Zuo and Hu (2020), the LA block is
applied to focus on the local information.

Firstly, the global average pooling (GAP) is used to squeeze the
dimensions of the input features:

GAP ∈ R𝐶×1×1 = GAP
(

g ∈ R𝐶×𝐹×𝑇 ) (8)

Where GAP(⋅) represents a GAP operation, 𝑔 is the output of Res2Net
feature aggregation.

In order to squeeze the one-dimensional channel of the convolution,
squeeze and transpose operations are then applied:

S&T ∈ R1×𝐶 = S&T
(

GAP ∈ R𝐶×1×1) (9)

where S&T(⋅) means the operation of squeeze and transpose.
In Hu, Shen, Albanie, Sun, and Wu (2019), the authors proposed

the Squeeze-and-Excitation (SE) block, which is different from the LA
block in that they use two fully connected layers to learn global channel
attention. The first FC layer is used for dimensionality reduction, and
the second FC layer is used to restore the dimensionality. Although
4

the parameters of this method are reduced by the dimensionality
reduction, the complexity of the model is still very high. In addition, the
dimensionality reduction can affect the performance of the model. To
address this issue, motivated by Wang, Wu et al. (2020), we apply the
one-dimensional convolution to acquire the local attention information.
The details are as follows:

Conv = Conv
(

S&T ∈ R1×𝐶) (10)

where the Conv(⋅) is the operation of one-dimensional convolution.
Then, the feature size is gradually restored by the transpose and

unsqueeze operations, which is defined as follows:

T&U ∈ R𝐶×1×1 = T&U
(

Conv ∈ R1×C) (11)

where T&U(⋅) means the operation of transpose and unsqueeze.
Finally, the T&U ∈ RC×1×1 is passed by the sigmoid layer to acquire

the vector of attention weight. The finally local attention vector can be
obtained by multiplying the attention weight and the input feature g
of local attention block.

la = g ⊗ sigmoid
(

T&U ∈ RC×1×1) (12)

where the la denotes the output of local attention block.

4. Experiments and results

4.1. Dataset

We conduct our experiments on the ASVspoof 2019 LA database and
the ASVspoof 2021 LA database.
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Table 1
The detailed information of ASVspoof 2019 LA Dataset. Where the
‘‘utt.’’ means the number of utterance.
Partition Bonafide Spoof Spoof

utt. utt. attacks type.

Train. 2580 22 800 A01–A06
Dev. 2548 22 296 A01–A06
Eval. 7355 63 882 A07–A19

4.1.1. ASVspoof 2019 LA database
ASVspoof 2019 LA4 mainly has 19 spoofing attack algorithms (A01–

A19), including three types of spoofing attacks: TTS, voice conversion
(VC), and audio playback. Table 1 details the components of the
ASVspoof 2019 LA dataset. It can be seen that the LA subset has
three parts: training, development, and evaluation. Among them, the
training set is used to train the model, the development set is used
to select the best performing model in training, and finally, the model
performance is evaluated through the evaluation set. The training set
and development set mainly include four TTS and two VC algorithms,
namely A01–A06. To better evaluate the performance of the system,
unseen spoofing attacks were added to the evaluation set, including two
known spoofing attacks (A16 and A19) and 11 unseen spoofing attacks
(A07–A15, A17, and A18).

4.1.2. ASVspoof 2021 LA database
The difference between ASVspoof 2019 and 20215 LA database is

the evaluation set. Therefore, the ASVspoof 2019 LA training and dev
sets are used to train the model. The evaluation set contains about
180,000 utterances transmitted through real telephone systems with
different bandwidths and different codecs. The transmission interfer-
ence of this data set greatly affects the performance of the FSD system
and makes it more challenging.

To quantitatively evaluate the performance of different FSD sys-
tems, EER and the minimum normalized tandem detection cost function
(min t-DCF) are applied. EER is the working point where the false
rejection rate (FRR) and false acceptance rate (FAR) are equal.

4.2. Experimental setup

First, we perform STFT operations on the original audio waveform.
We use Blackman as the window function of the STFT and set the
window length and hop length to 1728 and 130, respectively, to
obtain a spectrogram of size 865. Then, we fix the number of frames
to 600 by truncating and concatenating. So the feature dimension is
865 × 600. We take the 0–400 Hz LPS feature as the F0 subband, so
the corresponding frequency dimension is 45. Therefore, the first 0–
45 dimensions are taken as the F0 subband features, and 45 × 600 is
obtained by cutting the above features.

Network architecture: In this paper, Res2Net6 is used as the back-
bone network, the proposed SR block is embedded in the internal
channel residual connections of Res2Net, and the proposed LA block
is embedded after the channel aggregation of Res2Net. As shown in
Figs. 3 and Table 2, the details including convolution kernel, channels,
and repetition counts are provided. In addition, we use Adam as the
optimizer, and the parameters of the optimizer are set to: 𝛽1 = 0.9,
𝛽2 = 0.98, 𝜖 = 10−9 and weight decay is 10−4. The number of the epoch
is 32. Fig. 4 shows the EER results for different numbers of channel
groups (n) based on the SR-LA Res2Net architecture. From Fig. 4, we
can see that the best performance is achieved for n=8, so we set the
number of channel groups to 8 in the experiment.

4 https://datashare.ed.ac.uk/handle/10283/3336
5 https://zenodo.org/records/4837263
6

5

https://github.com/Res2Net
Table 2
The proposed SR-LA Res2Net model architecture and configuration.
Dimensions refer to (channels, frequency, and time). Batch normalization
(BN) and Rectified Linear Unit (ReLU), SR and LA are the spatial
reconstruction block and the local attention block, respectively.
Layer Input: 27000 samples Output shape

Front-end F0 subband (45,600)(F,T)

Post-processing
Add channel (1,45,600)
Conv2D_1 (16,45,600)
BN & ReLU

Res2-block 2 ×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Conv2D_1
Conv2D_3 & SR

Conv2D_1
LA

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(32,45,600)

Res2-block 2 ×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Conv2D_1
Conv2D_3 & SR

Conv2D_1
LA

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(64,23,300)

Res2-block 2 ×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Conv2D_1
Conv2D_3 & SR

Conv2D_1
LA

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(128,12,150)

Res2-block 2 ×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Conv2D_1
Conv2D_3 & SR

Conv2D_1
LA

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(256,6,75)

Output Avgpool2D(1,1) (256,1,1)
AngleLinear 2

Fig. 4. The EER results of SR-LA Res2Net for different number of channel groups (n).
To avoid randomness in the experiments, the results are averaged for the three runs.
Where the green line meas the average results and the red line denotes the best results
of the three runs.

In addition, since the ASVspoof 2021 LA dataset was interfered
with by transmissions such as telephone communications, we used the
Rawboost7 (Tak, Kamble, Patino, Todisco, & Evans, 2022) data en-
hancement method when training the evaluation used for the ASVspoof
2021 LA dataset. Specifically, we added impulse signal-independent
additive noise and stationary signal-independent additive noise to the
original waveform.

7 https://github.com/TakHemlata/RawBoost-antispoofing

https://datashare.ed.ac.uk/handle/10283/3336
https://zenodo.org/records/4837263
https://github.com/Res2Net
https://github.com/TakHemlata/RawBoost-antispoofing
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Fig. 5. The EER and t-DCF results for our proposed different systems in the ASVspoof
2019 LA evaluation set (A07-A19). Where SR, LA, and SE are the different components
embedded in the Res2Net.

Table 3
Results of our proposed ablation experiments for different compo-
nents. The results are the average of three runs, with the best of the
three results in parentheses.
Systems t-DCF EER(%)

SR-LA Res2Net (F0) 𝟎.𝟎𝟏𝟓𝟗(𝟎.𝟎𝟏𝟒𝟑) 𝟎.𝟒𝟕(𝟎.𝟒𝟐)
SR-SE Res2Net (F0) 0.0270(0.0227) 0.84(0.74)
SR Res2Net (F0) 0.0306(0.0302) 0.96(0.95)
LA Res2Net (F0) 0.0246(0.0229) 0.80(0.77)
SE Res2Net (F0) 0.0310(0.0292) 1.01(0.95)
Res2Net (F0) 0.0353(0.0335) 1.17(1.14)
LA ResNet (F0) 0.0388(0.0364) 1.26(1.14)
SE ResNet (F0) 0.0424(0.0392) 1.36(1.23)
ResNet (F0) 0.0493(0.0406) 1.64(1.34)

4.3. Experimental results on ASVspoof 2019 LA dataset

4.3.1. Effectiveness of the F0 subband
This section evaluates the effectiveness of F0 subband feature on

different network structures. Fig. 5 shows the minimal t-DCF and EER
results for the different systems we proposed. To avoid randomness in
the experiments, the results are averaged for the three runs, with the
best of the three runs in parentheses. ‘‘F0’’ represents based on the F0
subband feature, and ‘‘L’’ represents based on the low frequency (0–
4000 Hz) (Zhang, Wang et al., 2021) subband feature. The first six
lines are the results of the F0 subband feature. The last six lines are
experimental results based on low frequency subband feature. Fig. 7
shows the EER histograms based on the F0 subband and low subband
features, with EERs calculated separately for different attack types.

From Figs. 5 and 7, we can see the following.
(1) In the LPS features, the performance of the F0 subband is better

than that of the lower subband features in all cases. For example,
in our proposed state-of-the-art classifier-SR-LA Res2Net, the average
EER of its F0 subband is 0.47%, while the EER of the low subband
is 1.86%. Even though the low subband (0–4000 Hz) has ten times
more band information than F0 (0–400 Hz), it performs much worse
in the FSD task. This is because the main discriminative information
is concentrated in the F0 sub-band, and the other frequency band
information may make it overfitting. The experimental results show
that the F0 subband is an important identification feature.

(2) The F0 subband feature has general applicability for different
types of attacks. For low subband features, the attack types of A08
(neural waveform), A17 (waveform filtering), and A18 (vocoder) are
difficult to detect. For example, Al-Radhi, Csapó, and Németh (2018)
proposed a source-filter based vocoder, in order to refine the output
6

of the contF0 estimation, the authors used post-processing to reduce
Fig. 6. EER(%) results for the evaluation subset (A07-A19). The EER(%) of each spoof
method is calculated separately.

the unwanted vocalized components of unvoiced speech, resulting in a
smoother contF0 trace. It can be seen in Fig. 7 that the F0 subband
has good performance for different attack types, even for the notorious
attack type like A17. Overall, the F0 subband features outperform the
lower subbands on different classifiers.

(3) SR-LA Res2Net classifier can fully exploit the discriminatory
ability of F0 subbands. For example, from ResNet to SR Res2Net and
then to SR-LA Res2Net, attacks such as A08 and A17 are greatly
optimized under the F0 subband, but it is more difficult to develop for
the low subband, which may be due to the interference of having a lot
of redundant information in the low subband.

4.3.2. Effectiveness of the SR-LA Res2Net architecture
To verify the effectiveness of our proposed FSD system based on the

F0 subband and the SR-LA Res2Net, we performed a series of ablation
experiments. Table 3 shows the min t-DCF and EER results of our
proposed different systems. In addition, to validate the effectiveness
of our proposed SR-LA Res2Net, we used some recently published
advanced network to model the F0 subband. Fig. 6 shows the EER for
the different networks.

Firstly, the multi-scale feature representation of F0 subband is an
effective way to improve the performance of the pseudo-speech detec-
tion system. the EER result of ‘‘ResNet (F0)’’ is 1.64%, while the EER
result of ‘‘Res2Net (F0)’’ is 1.17%. This is due to the fact that Res2Net
is designed with residual connections within the channel group so that
the model can learn information at different scales to discriminate.
However, when the Res2Net extracts multi-scale features, the larger the
number of channel groups, the more information is superimposed, and
the spatial structure of the features will also have more artifacts, which
affects the ability of the model to capture fundamental discriminative
information. Therefore, we design the spatial reconstructed block to be
integrated into the residual connections of Res2Net to reconstruct the
feature space before transferring the information. Experimental results
show that SR-Res2Net (F0) has a good performance improvement over
Res2Net (F0). This suggests that the spatial reconstruction mecha-
nism helps remove spatial structure artifacts and further improves the
performance of the model.

Next, we integrate a local attention block at the bottom of Res2Net.
This is because the deepest channel group of the Res2Net superimposes
all the information, and the rest also superimposes a lot of information,
which leads to the generation of a lot of redundant information and

further covers the important discriminative information. We propose
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Fig. 7. EER results of our proposed different systems on the ASVspoof 2019 LA evaluation set (A07-A19). The EER of each spoof method is calculated separately.
Table 4
Comparison of the results of F0 subband features on other advanced classifiers.
Systems Input t-DCF EER(%) #Parm

ACNN (Ling et al., 2021) FFT 0.0510 1.87 1.04M
F0 subband 0.0454 1.46

MCG-Res2Net (Li, Wu et al., 2021) CQT 0.0520 1.78 1.09M
F0 subband 0.0299 1.03

LCNN (Lavrentyeva, Tseren, Volkova, Gorlanov, Kozlov, & Novoselov, 2019) FFT 0.1028 4.53 0.78M
F0 subband 0.0417 1.30

ResNet18-L-FM (Chen et al., 2020) LFBs 0.0520 1.81 0.68M
F0 subband 0.0465 1.48

SR-LA Res2Net ( Ours) F0 subband 0.0159 0.47 0.95M
to restore the weights of important information through local atten-
tion blocks after this information is aggregated. Specifically, we also
compare the performance of local attention (LA) and global attention
(SE) (Hu et al., 2019), and the experimental results show that lo-
cal attention is better than global attention. We think there are two
reasons: ① When generating the attention map, much long-distance
nformation in the global information cannot accurately capture its
pecific connection, and the short-distance information can better judge
he weight of the central information; ② The global attention block

uses two fully connected layers, which are used for dimensionality
reduction and expansion, respectively. The dimensionality reduction
operation may result in the loss of some information, which can affect
the discriminability of the model. According to the experimental results
of integrating local attention blocks and global attention blocks respec-
tively, LA Res2Net achieves an EER result of 0.80%, and SR-LA Res2Net
achieves an EER result of 0.47%. This shows that local attention can
7

capture important information in more detail and reduce the influence
of redundant information left over from the network.

Finally, for the setting of the number of channel groups in the SR-LA
Res2Net, we believe that n=8 is most appropriate for right in the fake
audio detection task, thus achieving state-of-the-art performance. This
is because the information exchange at this time is sufficient and the
feature representation is reasonable.

Moreover, to verify the effectiveness of our proposed SR-LA Res2Net,
we simulate the F0 subband with some recently published advanced
networks. Table 4 shows the EER and t-DCF of different networks,
which demonstrates the differences between different networks when
using either the original features or the F0 subband. Fig. 8 shows
the specific EER results of the attack. From Figs. 6 and 8, we see
that the F0 subband feature can achieve excellent performance when
paired with other networks, and SR-LA Res2Net can fully access the
discriminative information of the F0 subband and perform extremely

well in all aspects.
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Fig. 8. EER results of the F0 subband feature on other advanced classifiers.

Fig. 9. Subplot (a) shows the t-SNE visualization for the low-frequency subband and
SENet system, and subplot (b) shows the t-SNE visualization for the F0 subband and
SR-LA Res2Net system. The blue dots represent real speech and the red dots represent
false speech.

4.3.3. Effective generalization ability of SR-LA Res2Net architecture
Fig. 6 counts the EER of each attack algorithm for different systems.

From Fig. 6, we can draw the following points. First, when different
classifiers capture the details of the feature and then generalize to
unknown attacks, their biases will be large. For example, the GMM-
based baseline algorithm is very effective against attack algorithms
such as A08, but the performance of attack algorithms such as A10,
A13, A14, and A17 becomes extremely poor. Even so, it is not our
original intention to only effectively target a certain attack algorithm.
For example, our proposed SR-LA Res2Net (n=8, F0) can be generalized
to each unseen attack more evenly, which is the focus of our work.

Second, it is well known that the A17 algorithm is notorious, and
the method was judged to have the highest spoofing ability in the 2018
8

Table 5
EER and t-DCF of single systems and primary systems based on the
top performance of ASVspoof 2019 LA dataset.

(a) Single systems

System t-DCF EER%

CQCC+GMM (B1) 0.2316 9.57
LFCC+GMM (B2) 0.2116 8.09
LFCC-Siamese CNN (Lei, Yang, Liu, & Ye, 2020) 0.0930 3.79
RW-ResNet (Ma, Ren, & Xu, 2021) 0.0820 2.98
ACNN (Ling et al., 2021) 0.0510 1.87
MCG-Res2Net50 (Li, Wu et al., 2021) 0.0520 1.78
FFT-L-SENet (Zhang, Wang et al., 2021) 0.0368 1.14
AASIST (Jung et al., 2022) 0.0347 1.13
SAMO (Ding, Zhang, & Duan, 2023) 0.0356 1.08
PA-Res2Net (Kim & Ban, 2023) 0.0300 1.07
ECANet_SD (Xue et al., 2023) 0.0295 0.88

Ours (single system) 𝟎.𝟎𝟏𝟓𝟗 𝟎.𝟒𝟕

(b) Fusion systems

System t-DCF EER%

T05 (Todisco et al., 2019) 0.00690.22
T45 (Lavrentyeva et al., 2019) 0.05101.84
T60 (Chettri et al., 2019) 0.07552.64
GMM fusion (Tak, Patino, NAutsch, Evans, & Todisco, 2020)0.07402.92
T24 (Todisco et al., 2019) 0.09533.45
T50 (Yang et al., 2019) 0.16713.56

Ours (single system) 𝟎.𝟎𝟏𝟓𝟗 𝟎.𝟒𝟕

Speech Transformation Challenge (Kinnunen et al., 2018). However,
our proposed SR-LA Res2Net system can obtain 0.70% EER on the A17
attack, which is the best performance among all systems. We believe
that the multi-scale feature representation enables the FSD system to
be generalized to spoofing attacks like A17. the EER results of the
ResNet (F0) and Res2Net (F0) systems on A17 are 4.43% and 3.09%, re-
spectively, which indicates that multi-scale features can greatly extend
the feature receptive field and enhance its generalizability. However,
the channel group information of its Res2Net architecture is constantly
superimposed, which requires a spatial reconstruction block to recon-
struct each channel group information, and the EER result of its SR
Res2Net (F0) at A17 is 1.95%, and the experimental results prove that
the spatial reconstruction block can reduce the influence of redundant
information. In addition, other systems have poor performance for
unseen attacks like A08, A17, and A18, but the SR-LA Res2Net (F0)
system achieves high performance in the face of all unseen attacks.
This further validates the need to integrate spatial reconstruction block
and local attention block in Res2Net, which can greatly improve the
generalization ability of the model.

Third, compared to our proposed SR-LA Res2Net (F0) system, other
systems are difficult to pass in some individual deception algorithms.
For example, the B1 system achieves an EER result of 26.15% in the
A13 algorithm, and our SR-LA Res2Net (F0) system has an EER of 0.09
for A13, and other systems also performed well. For A18, the SR-LA
Res2Net (F0) system leads the way.

In summary, the strong generalization of the SR-LA Res2Net (F0)
system comes from the spatial reconstructed block and the local atten-
tion block. By reconstructing the feature space and focusing on local
information, it reduces the multi-scale sequelae brought by feature
representation, which greatly improves the performance of the FSD
system.

4.3.4. Comparison with other systems
Table 5 shows the results of the eight best-performing single sys-

tems, the six main systems, and our best system on the ASVspoof 2019
LA evaluation set. Where B1 and B2 are the baseline systems. The
results of single systems are shown in Table 5a. These systems include
some top-performance systems from the ASVspoof 2019 challenge and
systems from recently published papers. Table 5b shows the results of
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Table 6
EER and t-DCF of single systems and primary systems based on the
top performance of ASVspoof 2021 LA dataset.

(a) Single systems

System t-DCF EER%

B03 (Yamagishi et al., 2021) 0.3445 9.26
B04 (Yamagishi et al., 2021) 0.4257 9.50
B01 (Yamagishi et al., 2021) 0.4974 15.62
B02 (Yamagishi et al., 2021) 0.5758 19.30

Ours (single system) 𝟎.𝟐𝟔𝟒𝟐 𝟑.𝟔𝟏

(b) Fusion systems

System t-DCF EER%

T23 (Tomilov et al., 2021) 0.2177 1.32
T20 (Chen, Khoury, Phatak, & Sivaraman, 2021) 0.2608 3.21
T04 (Cáceres, Font, Grau, & Molina, 2021) 0.2747 5.58
T06 (Kang, Alam, & Fathan, 2021) 0.2853 5.66

Ours (single system) 𝟎.𝟐𝟔𝟒𝟐 𝟑.𝟔𝟏

the primary systems, where T05, T45, T60, T24, and T50 represent the
anonymous identifiers of the teams in the ASVspoof 2019 challenge.
These primary systems may contain multiple front-end features and
neural network architectures. The GMM fusion system consists of the
nonlinear fusion of its six subbands. From the performance comparison
of different systems in Table 5, it can be seen that our proposed
system achieves state-of-the-art performance in a single system, and
also outperforms the second-ranked system on the ASVspoof 2019 LA
challenge among the primary systems.

To the best of our knowledge, among all fusion systems, only the
T05 system outperforms us. Here we want to emphasize that the fusion
system is obtained by fusing multiple single systems, which means
that multiple models need to be trained and finally fused, so that the
overall model parameters are huge. Moreover, T05 is a fusion of 7
single systems, including 2 Resnet models, 4 MobileNet models, and
1 DenseNet model, and the final results are obtained by combining
the equal weights of these 7 single systems. It can be seen that the
T05 system architecture is extremely complex. Therefore, our proposed
single system has advantages in terms of performance and network
architecture.

4.3.5. t-SNE visualization analysis
To visualize the effectiveness of the proposed approach, we also

visualize the baseline system and my proposed system using t-SNE (van
der Maaten & Hinton, 2008), respectively. Both models are trained on
the LA dataset in Asvspoof 2019 and take the penultimate layer of
the network. As shown in Fig. 9, we can see that the real and fake
speech of the Low subband and SENet systems are not distinguished,
and there are many blue dots embedded inside the red dots. While the
true and false speech of the F0 subband and SR-LA Res2Net systems are
separated, there is only a little blending at the boundary. The above
visualization results further validate our experimental results.

4.4. Experimental results on ASVspoof 2021 LA dataset

Table 6 shows the results of the ASVSpoof 2021 LA Challenge for
single and fusion systems. Among them, the T23 (Tomilov et al., 2021)
system is a fusion of twelve subsystems, including ten MSTFT-LCNN
systems, one MSTFT-ResNet system, and one RawNet system, finally
fused in the scoring stage by a fine weight assignment; the T20 (Chen
et al., 2021) system is a fusion of three subsystems based on ResNet
system with equal weight fusion of scoring; the T04 (Cáceres et al.,
2021) system is a scoring fusion of three subsystems, namely LFCC-
LCNN, RawNet2, and lightweight TDNN Focal, and all three subsystems
use a data enhancement strategy; the T06 (Kang et al., 2021) system is
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a fusion of eight subsystems, namely an LFCC-LCNN system (baseline),
one RawNet2 system (baseline), one LFCC-GMM, four LFCC-SENet sys-
tems, and one PSCC-TDNN system, all of which use data enhancement
strategies except for the baseline system. B01–B04 are the four baseline
systems for the ASVSpoof 2021 LA Challenge. The following points can
be observed from the table:

(1) Most of the systems perform data enhancement in the face of
transmission interference in the ASVspoof 2021 LA data set, and the
performance is poor for the baseline systems that do not perform data
enhancement.

(2) Several of the most advanced systems submitted at the ASVspoof
2021 LA challenge are fusion systems, while we can obtain good
performance for our single system.

In conclusion, our proposed single system is competitive in the
face of both single and fusion systems, which further validates the
effectiveness of our proposed method.

4.5. Comparison with conventional F0 extraction methods

We extracted traditional 3D additional pitch features as auxiliary
features through the Kaldi tool, which was used in combination with
the 80-dimensional MFCC, 60-dimensional LFCC, and low subband. As
shown in Table 7, 3D denotes the additional three-dimensional pitch
features. The results in Table 7 show that the additional pitch features
can indeed improve the Kaldi performance of the FSD system, which
also verifies that F0 has effective discriminative information. However,
the system performance is still limited compared to the F0 subband,
which also shows the superiority of the F0 subband features.

5. Discussion

In this section, we discuss the advantages, shortcomings, and future
directions of the proposed method in the current research of FSD.

First, our proposed system has a high-performance advantage, be-
cause the F0 subband features have a strong discriminative ability to
distinguishing between real and fake speech, and the SR-LA Res2Net
can further utilize the multi-scale discriminative information of F0
subband to improve the performance of FSD. In addition, from the
results of the ASVspoof 2021 LA database, it can be found that our
proposed single system can still achieve competitive performance even
in a fusion system.

Further, the proposed system also has obvious advantages in real
scenarios and practical applications. The first one is to deal with a
large amount of data, like about 180,000 entries on the ASVsopoof
2021 LA dataset, which can still be handled efficiently by the proposed
system. The second is the challenge of practical deployment, most of the
current systems are deployed in automatic speaker verification (ASV),
automatic Speech Recognition (ASR), etc., which may require lower
computational requirements, and the proposed system is also less than
1MB in model parameters, which is also very convenient to use for
ensembling other existing systems. On the other hand, since the system
is mostly deployed for ASV and ASR systems, the communication inter-
ference encountered in real scenarios is the most common. Thus, the
ASVspoof 2021 LA dataset models a large number of communication
disturbances, specifically real and spoofing speech transmitted using a
variety of telephony systems, including Voice over IP (VoIP) and Public
Switched Telephone Network (PSTN).

Finally, we summarize the future directions of FSD systems. (1)
Improve the generalization ability of the system in the face of unknown
attacks; (2) Enhance the robustness of the system in complex scenarios,
such as bandwidth noise, communication interference, and other real-
world conditions; (3) Explore the study of lightweight of the system,
which can have efficient flexibility in specific applications; (4) Explain
the decision-making process of the system in depth. The current re-
search on FSD is not able to do the above points better, which is a future
research trend, including the ASVspoof dataset also needs to make more
progress for more application scenarios.
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Table 7
EER and t-DCF results for conventional pitch features and F0 subbands under different models. F0 (3D)
indicates that additional pitch features (probability of voicing, pitch value and delta pitch value) are used
together.

Front-end Res2Net LA Res2Net SR-LA Res2Net

EER(%)

MFCC 9.06 8.26 7.77
MFCC + F0 (3D) 7.92 7.72 7.39

LFCC 4.92 2.28 2.05
LFCC + F0 (3D) 3.76 2.42 1.99

Low subband 1.85 2.82 2.06
Low subband + F0 (3D) 1.82 1.53 1.47

F0 subband (Ours) 1.17 0.80 0.47

t-DCF

MFCC 0.2220 0.1825 0.2146
MFCC + F0 (3D) 0.1836 0.1779 0.2312

LFCC 0.1358 0.0652 0.0552
LFCC + F0 (3D) 0.0815 0.0666 0.0538

Low subband 0.0510 0.0561 0.0577
Low subband + F0 (3D) 0.0597 0.0455 0.0389

F0 subband (Ours) 0.0353 0.0246 0.0159
C

C

C

C

C

D

D

D

F

F

F

G

6. Conclusions

In this paper, we propose an F0 subband with SR-LA Res2Net for
FSD. The F0 distribution of bonafide speech is often difficult to replicate
so it is very different from the fake one. Therefore, we think the
F0 contains the discriminative information. In addition, to effectively
model the F0 subband, we propose a novel SR-LA Res2Net for FSD.
Specifically, the SR block is designed to eliminate spatial artifacts
when information is transmitted between channel groups. The LA block
is used to focus on local information. Experimental results on the
ASVspoof 2019 LA dataset show that our proposed approach is very
effective against unseen spoofing attacks and achieves a minimum t-
DCF of 0.0159 and an EER of 0.47%, which achieves state-of-the-art
performance among all single systems. One of the limitations of this
work is that we only use the F0 subband for FSD. The other speech
information is abandoned, which may also contain some important
discriminative information. In the future, to make full use of the speech
information, we will explore combining the F0 subband with other
speech features to further improve the performance of FSD.
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