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Abstract—Recently, multimodal fusion efforts have achieved remarkable success in Multimodal Sentiment Analysis (MSA). However,
most of the existing methods are based on model-level fusion, and the challenge of heterogeneity between modalities is not well
resolved. Heterogeneity lies in the different feature distributions and distinct representation spaces among different modalities. To
mitigate this problem, we propose that fusion is a progressive process, and we introduce a novel multi-level contrastive learning and
multi-layer convolution fusion (MCL-MCF) method for MSA. Due to the relationships among multimodal data, the fusion process that
involves single-modal to single-modal, single-modal to bimodal or trimodal, and higher-level fused modality semantic consistency is
divided into three levels. The first-level contrast learning alleviates heterogeneity between unimodal modalities at the early level of
multimodal feature fusion. The second-level contrast learning mitigates heterogeneity between unimodal and fused modalities. At the
third level, we introduce a tensor convolution fusion (TCF) module that extracts high-level semantic features from the fused modalities
and mitigates heterogeneity at the higher feature level through contrastive learning. To simulate fusion as a progressive process, MCF
is proposed to fuse shallow and deep features to model complex relationships among modalities. Experiments on three public datasets
show our approach’s state-of-the-art performance.

Index Terms—multimodal sentiment analysis, multi-level contrastive learning, convolution fusion, heterogeneity.

✦

1 INTRODUCTION

MULTIMODAL sentiment analysis (MSA) aims to predict
emotional scores from audio, visual, and text features.

MSA has been widely used and has become a popular topic
of research. It has been widely applied in areas such as
marketing management [1] [2], social media analysis [3] [4],
and human-computer interaction [5] [6]. Although it is easy
for humans to perceive the world through comprehensive
information acquired via multiple sensory organs [7], the
question of how to endow machines with analogous cog-
nitive capabilities is still unresolved. One of the challenges
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we are facing is the heterogeneity gap in multimodal data
[8]. This gap arises from the initial unequal subspaces of
feature vectors extracted from different modalities, leading
to completely different vector representations for seman-
tically similar elements. This phenomenon poses a chal-
lenge to the comprehensive utilization of multimodal data
by subsequent machine learning modules [9]. Researchers
have made remarkable strides in the realm of designing
multimodal feature fusion methods [10]–[14]. Nevertheless,
limited consideration has been given to addressing the
disparities in heterogeneity among multimodal features.
Currently, there are two main methods in MSA: the first
involves geometric operations performed on feature vectors
to achieve feature fusion, while the second involves the use
of a transformer (attention) to design complex feature fusion
methods.

There are numerous ways to perform geometric opera-
tions on eigenvectors, such as simple splicing of eigenvec-
tors, outer products, stacking and vector offset correction,
or weighted summation. The tensor fusion network (TFN)
[15] uses three modalities and adds a dimension to perform
three geometric outer product operations to achieve the
fusion of three modal features. The TFN has a good fusion
effect when using the vector outer product, but it does
not consider the heterogeneity of multimodal features that
could hinder its effect. In [16], the authors proposed the
multimodal adaptation gate (MAG) mechanism. They used
attention gating to generate features that shift the position
of linguistic features in the vector space to shift the linguistic
feature vectors to the optimal position for fusion. The offset
used by MAG is derived from the fusion of attention,
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and the heterogeneity between multimodal features hinders
the generation of the optimal offset, thereby affecting the
effectiveness of subsequent operations.

Moreover, transformers (attention) have proven to be
effective in the fields of natural language processing and
computer vision. Researchers at MSA have proposed a
variety of excellent models [17] [18] [19]. [20] proposed that
the message hub mechanism adopts a multi-layer cross-
attention method to solve the problem of time asynchrony
between multimodal features, but the significant differences
in data distribution between multimodal features may lead
to uneven attention weight allocation, thereby affecting the
fusion effect and hindering cross-modal attention. Multi-
layer operation may become increasingly hindered, which
will eventually affect the experimental results. [21] used a
shared-private mask and cross-attention mechanism to ex-
tract features and used a linear layer in the fusion stage, but
the heterogeneity between multimodal features hindered
the fusion of the linear layer, reducing the effect. Although
these methods have strengths in feature fusion, the het-
erogeneity between multimodal features can hinder feature
fusion at different locations and stages of the features. A
common approach to address this problem is to project
the heterogeneous features into a shared subspace, where
multimodal data with similar semantics are represented by
similar vectors [22]. Therefore, the main objective of multi-
modal representation learning is to narrow the distribution
gap in a joint semantic subspace while preserving intact
modality-specific semantics [8].

Multimodal feature fusion encompasses the integration
of both basic information features and semantic information
features. Basic information features, such as texture and
details, capture low-level characteristics. On the other hand,
semantic information features represent high-level features
obtained through multiple stages of feature extraction. De-
spite expressing the same sentiment, different modalities ex-
hibit significant differences in their forms. The heterogeneity
of basic information and semantic information features lies
in the different feature distributions and distinct representa-
tion spaces among different modalities. This heterogeneity
exists not only within unimodal modalities but also across
unimodal and multimodal modalities, as well as among
different multimodal combinations. The challenge lies in
devising approaches that can mitigate the heterogeneity of
basic information and semantic information features among
different sentiment modalities, thereby facilitating effective
multimodal fusion. This remains a significant challenge in
the field.

In this paper, we propose the novel concept that mul-
timodal feature fusion is a progressive process. The fu-
sion process, which encompasses the relationships between
multimodal data, is categorized into three levels (early,
middle, and late). These levels involve the fusion of single-
modal to single-modal, and single-modal to bimodal or
trimodal features and the maintenance of higher-level fused
modality semantic consistency. Both multi-level contrastive
learning (MCL) and multi-layer convolution fusion (MCF)
have been designed with multiple levels or layers to align
with this framework. The MCL consists of three levels. The
first and second level primarily focus on addressing the
heterogeneity of basic information features, while the third

level primarily addresses the heterogeneity among high-
level semantic information features. The first level aids in
alleviating heterogeneity in individual modalities, making
it easier to fuse information between modalities at the
beginning of fusion. The second level reduces heterogeneity
between single modalities and bimodal or trimodal data,
further enhancing the fusion process. For the third level,
we introduce the tensor convolution fusion (TCF) mod-
ule, inspired by the TFN. The multimodal matrix obtained
through the outer product is referred to as a multimodal
“image” which may contain redundant information. There-
fore, we utilize multi-layer convolution to extract more
meaningful features. These extracted features are closer to
the late fusion features, thereby facilitating the promotion
of feature fusion through third-level contrastive learning.
Following the reduction of multimodal heterogeneity, we
implement a two-layer convolutional fusion approach: 1)
the fusion of unimodal features results in the acquisition
of the fused features of the first layer; 2) we independently
extract advanced features from each unimodal feature and
subsequently fuse them with the fused features obtained
from the first layer. Benefiting from the assistance of multi-
level contrastive learning, the fusion of multimodal features
occurs progressively, starting from low-level features and
advancing to high-level features, resulting in excellent out-
comes.

Experiments on three datasets demonstrate that our
method achieves impressive results. Multi-level contrastive
learning is effective in alleviating the heterogeneity between
multiple modalities, and multi-level convolutional fusion is
the icing on the cake. The novel contributions of our work
can be summarized as follows:

• Inspired by the fusion of objects in the natural
world, we conceptualize multimodal fusion as a con-
tinuous process, dividing the entire procedure into
three steps. We designed MCL-MCF. MCF simulates
the continuous fusion process, while MCL, through
multi-level alleviation of heterogeneity, assists MCF
in achieving multi-level fusion. Their collaborative
operation yields optimal fusion results.

• Taking inspiration from the TFN, we design a TCF
module and apply it for high-level feature extraction.
We conduct a comprehensive experimental analysis
to evaluate the effectiveness of the multimodal “im-
age”.

• Extensive experiments on three public datasets,
CMU-MOSI, CMU-MOSEI, and CH-SIMS were per-
formed. We outperform prior methodologies and
achieve results to those of superior state-of-the-art
models. 1

2 RELATED WORKS

2.1 Multimodal Sentiment Analysis (MSA)
In sentiment analysis, there are various methods of multi-
modal fusion, roughly divided into tensor-based [15] [23]
[24], GAN-based [9], attention-based [25] [26] [27] [16]

1. Codes are released at https://github.com/Zhudogsi/MCL-MCF
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Fig. 1: Overall architecture of the MCL-MCF model. MCL-MCF mainly consists of the unimodal encoding module, MCL,
MCF, and TCF; MCL has three levels of contrastive learning and the unimodal feature concatenation encoding module for

concatenating and encoding the unimodal features; TCF is the advanced feature extraction module, which extracts
high-level features required for third-level contrastive learning; and MCF has two layers of convolutional fusion for

primary and advanced feature fusion and sentiment intensity prediction for sentiment prediction. The encoder in TCF is a
two-dimensional convolution, while other encoders are one-dimensional convolutions.

[28], graph-based [29] [30], operation-based [31], translation-
based [32] [33] [34], routing-based methods [35], etc. [36]
employ information theory to quantify interactions within
multimodal data and the interplay captured by multimodal
models. [37] proposed a disentanglement translation net-
work (DTN) with slack reconstruction to capture essential
information attributes and reduce redundancy. [38] pro-
posed a novel meta-learning-based paradigm that preserves
the advantages of unimodal approaches, further enhanc-
ing the performance of multimodal fusion. To produce a
comprehensive fusion representation, these models employ
complex methods to design multimodal fusion. However,
many of these models overlook the substantial heterogene-
ity differences among multimodal data. The use of complex
fusion methods alone may not effectively address the in-
herent heterogeneity between different modalities, thereby
impacting the quality of multimodal data fusion. Incorpo-
rating additional auxiliary tasks to alleviate the heterogene-
ity differences between modalities is considered an effective
strategy.

2.2 Contrastive Learning
In recent years, contrastive learning has gained prominence
among researchers and has found widespread application in
MSA. [39] introduced multimodal infomax (MMIM), which
utilizes contrastive predictive coding (CPC) for single-
modal predictive contrastive learning. [40] proposed mul-
timodal contrastive learning (MMCL), which also uses the
fused modality to perform predictive contrastive learning
on a single modality. [41] proposed the contrastive learning
and multi-layer fusion (CLMLF) method, which employs
labeled and unlabeled contrastive learning for emotion-
related tasks. [42] presented a framework hycon for hybrid

contrastive learning of tri-modal representation, utilizing
various positive and negative sample selection methods
for contrastive learning for multimodal sentiment analy-
sis. FACTORCL decomposes information into shared and
unique representations, achieving optimal results through
the maximization and minimization of mutual informa-
tion. By capturing both shared and unique information,
it achieves optimal outcomes [43]. [44] proposed face-to-
face contrastive learning (F2F-CL), which models social
interactions by decomposing nodes and contextualizing
multimodal face-to-face interactions along the boundaries
of conversational turns. Contrastive learning in the image
field [45] [46], such as [47] [48] [49] [50], is widely used
and often requires data enhancement methods [50] [51] [52]
to generate positive and negative samples. However, most
contrastive learning-based MSA models do not include a
data augmentation component. Since multiple modalities
inherently contain the same semantic information, they can
effectively serve as augmented modalities for each other.
Hence, contrastive learning is well suited for MSA.

3 METHOD

3.1 Problem Definition

The task of MSA is to use multimodal information to iden-
tify the polarity of expressed emotions. The input signal
consists of three parts, corresponding to three modes: text(t),
visual(v), and acoustic(a). The input to the model is uni-
modal sequences Xm ∈ Rlm×dm , where lm is the sequence
length and dm is the representation vector dimension of
modality m, m ∈ (t, a, v). The goal of designing a model is
to extract and integrate task-related information from these
input vectors, form a unified representation, and use it to
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make accurate predictions of the true value y reflecting the
intensity of emotions.

3.2 Overall Architecture

Figure 1 shows the structure of the entire model, which
consists of three parts: a unimodal encoding module, an
MCL-MCF module, and a sentiment intensity prediction
task. In the unimodal encoding module, the text modality
utilizes pre-trained BERT [53] to extract features from raw
text, while the audio and visual modalities are extracted
using long short-term memory (LSTM) [54]. Subsequently,
these features are mapped to the same dimension via one-
dimensional convolution and input into the MCL-MCF
module. The MCL-MCF module consists of two parts: multi-
level contrastive learning and multi-layer convolution fu-
sion. The MCL consists mainly of three levels. The first-level
contrastive learning is performed between single modalities.
The second-level contrastive learning first concatenates and
encodes modalities with the same dimensions for prelim-
inary fusion and then performs contrastive learning with
single modalities. In the third level of contrastive learning,
the single modality is first input into the TCF module,
where an outer product operation is performed to generate
a matrix. Subsequently, feature extraction entails a three-
layer convolution process, followed by flattening and con-
trastive learning. The feature fusion module is composed of
two layers of convolution fusion, with the first layer being
the fusion between single modalities and the second layer
being the fusion of high-level features, extracted from single
modalities, with the output of the first layer. Ultimately,
sentiment intensity prediction is executed.

ht = BERT (Xt; θ
BERT
t ) (1)

hm = LSTM(Xm; θLSTM
m ) m ∈ {a, v} (2)

where ht is the head embedding extracted from the output
of the last layer of BERT and hm is the feature of the last
time step of LSTM, m ∈ {a, v}.

3.3 Multi-level Contrastive Learning

For the multi-level contrastive learning module, we design
three contrastive learning tasks, namely, multi-level con-
trastive learning. The first level is unimodal contrastive
learning, the second level is bimodal or trimodal contrastive
learning, and the third level is a convolution operation
after the outer product of two modalities to extract more
advanced fusion features for contrastive learning. As shown
in Figure 1, the multi-level contrastive learning module
consists of three parts, where hf represents the character-
istics of the input of the first-level contrastive learning, hs

represents the characteristics of the input of the second-level
contrastive learning and ht represents the characteristics of
the input of the third-level contrastive learning.

3.3.1 First-level Contrastive Learning
In the early stage of fusion, first-level contrastive learning is
employed to mitigate heterogeneity among single modal-
ities, assisting the initial fusion among single modalities.
The first-level contrastive learning is shown in Figure 1.

Algorithm 1: Contrastive Learning Method

Require: X1 ∈ RB×D1 , X2 ∈ RB×D2 The Project is a
linear project; B denotes of batch size; D denotes of
dimensions.;

1: X1

′
= Project(X1) ;

2: X2

′
= Project(X2) ;

3: X = L2 normalize(X1

′
, axis = 1);

4: Y = L2 normalize(X2

′
, axis = 1);

5: CL label = arange(B);
6: MXY = dot(X,Y.T ) ∗ exp(τ);
7: loss α = Cross Entropy(MXY , CL label);
8: loss β = Cross Entropy(MXY .T, CL label);
9: Loss = (loss α+ loss β)/2;

10: return Loss

TABLE 1: Explanation of symbols used.

Symbol Definition

t, a, v text, audio, visual

M the elemental matrix used for contrastive learning

Mij the element in the ith row and jth column of matrix M

Xf variable used for first-level contrastive learning

Xs variable used for second-level contrastive learning

Xt variable used for third-level contrastive learning

Lf the loss for the first-level contrastive learning

Ls the loss for the second-level contrastive learning

Lt the loss for the third-level contrastive learning

hf
m ∈ Rb×dmm ∈ (t, a, v) is projected to the same dimension

via convolution, where b is the batch size. These vectors are
then fed into Algorithm 1 to compute the infoNCE loss. The
difference in heterogeneity between unimodal and multi-
modal learning is reduced by first-level contrastive learning,
laying the foundation for unimodal fusion. Because there are
three modes, there will be three losses, namely, Lf ta, Lf tv ,
and Lfav . The total loss of first-level contrastive learning is
as follows:

Mf
mn = hf

m × (hf
n)

T (3)

Lfmn = −1

b

b∑
i=1

log

 exp(
Mf

ii

τ )

b∑
j=1

exp(
Mf

ij

τ )

 (4)

Lftotal = Lf ta + Lf tv + Lfav (5)

where b is the batch size; Mij represents the element in
the ith row and jth column of matrix M; i ̸= j; τ is
the temperature coefficient; Lf ta is the loss generated by
contrastive learning between text and acoustics; Lf tvand
Lfav are calculated in the same way; and m,n ∈ (t, a, v)
m ̸= n.

3.3.2 Second-level Contrastive Learning
In the middle stage of fusion, the second-level contrastive
learning begins with enhanced preliminary fusion, sup-
ported by first-level contrastive learning. It was subse-
quently applied to alleviate heterogeneity between single
and multimodal data, laying the foundation for the fusion
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of single and multimodal information. The structure of
the second-level contrastive learning is depicted in Fig-
ure 1. Unimodal feature concatenate encoding involves the
concatenation and encoding of unimodal features. We ag-
gregate multiple unimodal features and then apply one-
dimensional convolution for feature fusion, subsequently
projecting them to the same dimension. To fully slow
the heterogeneity difference between unimodal and fused
multimodal features, we utilize the fused features from
two modalities and combine them with another modality,
which is then input into Algorithm 1. We employ equation
(10) (for the trimodal fusion feature, use equation (11)) to
calculate the Ls loss. The experimental findings suggest
that interaction between the audio modality and trimodal
features can effectively reduce the heterogeneity issue at
the second-level features. Second-level contrastive learning
contributes to mitigating the heterogeneity between single-
modality and multimodal feature fusion. The total loss of
second-level contrastive learning is as follows:

hs
mn = Conv1D([hm, hn]) (6)

hs
tav = Conv1D([ht, ha, hv]) (7)

Ms
mn−k = hs

mn × (hs
k)

T (8)

Ms
tav−a = hs

tav × (hs
a)

T (9)

Lsmn−k = −1

b

b∑
i=1

log

 exp(
Ms

mn−k(ii)

τ )

b∑
j=1

exp(
Ms

mn−k(ij)

τ )

 (10)

Lstav−a = −1

b

b∑
i=1

log

 exp(
Ms

tav−a(ii)

τ )

b∑
j=1

exp(
Ms

tav−a(ij)

τ )

 (11)

Lstotal = Lsta−v + Lstv−a + Lsav−t + Lstav−a (12)

where b is the batch size; m,n, k ∈ (t, a, v) m ̸= n ̸= k;
Mij represents the element in the ith row and jth column
of matrix M; i ̸= j; τ is the temperature coefficient; hs

mn

represents the result of the initial fusion of hm and hn after
convolution (hs

tav similar operation); Ms
mn−k represents the

result of the matrix product of fusion mode hs
mn and single

mode hk (Ms
tav−a similar operation); and Lsta−v represents

the result of contrastive learning between the fusion model
hs
ta and the single modality hs

t (Lstv−a , Lsav−t , and
Lstav−a are similar).

3.3.3 Third-level Contrastive Learning
In the late stage of fusion, the TCF module is designed
for advanced feature extraction. The acquired advanced
features are utilized for third-level contrastive learning,
mitigating heterogeneity between multimodal sources in the
later stages of fusion. The third-level contrastive learning
is shown in Figure 1. Unlike with the first and second
level, we initially expanded the dimension of the single
modality to 512 and input it into the TCF encoder mod-
ule. The TCF module comprises two key components: 1)
geometric operations conducted on single modalities and
2) feature extractors. Geometric operations conducted on

single modalities refer to using the outer product of single
modalities to obtain a multimodal “image” of shape (1, 512,
512), which is the result of fusion. Experimental findings
have indicated that this multimodal “image” often contains
redundant information. A method akin to image analysis
is employed for feature extraction. This process amplifies
the number of channels and extracts features from differ-
ent perspectives of the multimodal “image”. Consequently,
advanced features are derived after modality fusion, with
subsequent channel reduction to mitigate the computational
cost of 1. These processed data are then input into Algorithm
1. Third-level contrastive learning focuses on contrastive
learning at the high-level feature fusion level, which con-
tributes to mitigating the heterogeneity between modalities
at the later level of fusion. The total loss of the third-level
contrastive learning is as follows:

htcm= Conv1D(h
t
m) (13)

M t
cmcn = ht

cm ⊗ ht
cn (14)

ht
mn = Flatten(Conv2d(M t

cmcn)) (15)

M = ht
mn × (ht

nk)
T (16)

Ltmn−mk = −1

b

b∑
i=1

log

 exp(
Mii

τ )

b∑
j=1

exp(
Mij

τ )

 (17)

Lttotal = Ltta−tv + Lttv−av + Ltta−av (18)

where b is the batch size; m,n, k ∈ (t, a, v) m ̸= n ̸= k; ⊗
is the vector outer product; Mij represents the element in
the ith row and jth column of matrix M; i ̸= j; τ is the
temperature coefficient; htcm represents the result of one-
dimensional convolution of single-mode m; M represents
the matrix obtained by matrix multiplication of ht

mn and
(ht

nk)
T ; Mt

cmcn represents the result of the outer product of
the single mode m and n, respectively, after the formula (13);
and Lsta−tv is the loss generated by contrastive learning
between ta and tv, Lstv−av , and Lsta−av are the same.

3.4 Multi-layer Convolution Fusion
Figure 2(a) illustrates the conventional use of one-
dimensional convolution. Taking a 1×1 convolution kernel
as an example, features are continuously extracted as the
kernel moves. However, this method solely captures data
features merged within the convolution kernel’s size and
might not adequately encompass the overall contextual in-
formation of the data. In contrast, (b) in Figure 2 depicts our
application of one-dimensional convolution. The number of
convolution channels is the same as the number of word
lengths, which is equivalent to observing data features from
multiple perspectives. The size of the convolution kernel is
fixed at 1×1.

Fusion is an incremental process characterized by its
division into multiple levels. single-level fusion is inade-
quate, and adopting a multi-level fusion strategy becomes
essential. Hence, we utilized this approach to design a two-
layer multimodal fusion method. The first layer involves the
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fusion of three single modalities to obtain a fused modality.
The second layer extracts high-level features from the single
modalities first and then fuses them with the fused modality
obtained from the first layer. With the aid of three-level
contrastive learning, the fusion of the first and second layers
can achieve excellent results.

h
′
= Conv1D([ht, ha, hv]) (19)

h
′

m = Conv1D(hm) m ∈ (t, a, v) (20)

h = Conv1D([h
′

t, h
′

a, h
′

v, h
′
]) (21)

ht, ha and hv are obtained via equation (1) or (2); h
′

t, h
′

a,
and h

′

v are calculated via equation (20); and h is used for
sentiment score prediction (after FC).

lawyer

rights

human

a

become

to

is

goal

My

lawyer

rights

human

a

become

to

is

goal

My kernel

lawyer

rights

human

a

become

to

is

goal

My kernel

(a) with 1 kernel of size 1x1

kernel

kernel

kernel

kernel

kernel

kernel

kernel

kernel

kernel

My

goal

is

to

a

become

human

lawyer

rights

(b) with 9 kernels of size 1x1

Fig. 2: The total length of the data is 9, with a kernel size of
1x1 and a stride of 1 for both convolutions. (a) performs a

standard one-dimensional convolution, while (b) has a
kernel number identical to the length of the data.

3.5 Relationships among MCL, MCF, and TCF

The concept of continuous fusion is introduced, with the
MCF simulating the continuous fusion of multiple modali-
ties. In this continuous fusion process, heterogeneity poses
a challenge. Mitigating heterogeneity at a single level is not
sufficient to achieve the optimal fusion effect. The reduction
in heterogeneity between modalities is achieved through
multimodal shifting methods [55]. Contrastive learning is
utilized to alleviate heterogeneity between single-modal
and multimodal data [56]. Therefore, MCL is divided into
three levels to alleviate modality heterogeneity at different
stages. The alleviation of multi-level modality heterogeneity
contributes to improving the overall multimodal fusion ef-
fectiveness of MCFs. First-level and second-level contrastive
learning are applied to the early and middle stages, re-
spectively. To better address multimodal heterogeneity and
acquire advanced features closer to the later stages of fusion,
inspired by the TFN, we designed a TCF for third-level
contrastive learning, which achieved promising results. Al-
though the first level alleviates heterogeneity between single
modalities, merely mitigating heterogeneity within single
modalities is insufficient for achieving optimal results in
multimodal fusion [40] [41]. Therefore, we designed the

second and third level. In the middle stage, the second level
merged single modalities into multimodalities, reducing
heterogeneity between single modalities and multimodali-
ties. In the late stage, the third level reduces heterogeneity
between multiple modalities. While each step of MCL has
minimal differences, they each play distinct roles. Their
collaborative efforts contribute to achieving the optimal
fusion result. It is inappropriate for multimodal fusion to
only consider reducing differences; the complementarity
between modalities is equally important [57] [58] [59]. To
avoid the confusing impact of complementary loss and
model parameter quantity on model performance, we select
fusion features from both shallow and higher-level features,
excluding features for conducting comparative learning.
The simultaneous application of the above steps optimizes
the fusion effect.

4 SENTIMENT INTENSITY PREDICTION

Finally, after the effect of three-level contrastive learning,
these three modalities improve in terms of the fusion effect,
the mixed-modal fusion period, and the advanced feature
fusion period, and the heterogeneity between the modali-
ties greatly decreases. We perform multimodal fusion and
calculate the prediction result loss, as in equation (22). The
total loss of the model is shown in equation (23).

Lreg =
1

n

n∑
i=1

|yi − ŷi| (22)

where n is the number of training samples, the truth sen-
timent label is yi, and the prediction of the final sentiment
score is ŷi.

Ltotal = Lreg + αLftotal + βLstotal + γLttotal (23)

The contribution weights of α, β, and γ multi-level con-
trastive learning are used to mitigate modal heterogeneity
at different levels.

TABLE 2: Dataset split.

Dataset Train Valid Test All

CMU-MOSI 1284 229 686 2199

CMU-MOSEI 16326 1871 4659 22856

CH-SIMS 1368 456 457 2281

5 EXPERIMENTS

In this section, we empirically evaluate the performance
of MCL-MCF on MSA tasks with three publicly available
academic datasets and present the experimental details,
including datasets, baselines, and results.

5.1 Datasets and Evaluation
The CMU-MOSI [61] dataset is a popular benchmark
database in MAS research. The data were collected from
YouTube and consisted of 93 monologs in which speakers
commented on specific topics. The dataset contains clips
of 26,295 total words in 2,199 opinion video utterances
annotated with sentiment strength labels ranging from -3
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TABLE 3: Results on CMU-MOSI and CMU-MOSEI; All models use bert-base-uncased as the text encoder; In Acc-2 and
F1-Score, the left of the “/” is calculated as negative/non-negative and the right is calculated as negative/positive; †

indicates that the corresponding result is significantly better than the MMIM with p-value < 0.05 based on paired t-test.
Performance Comparison between MCL-MCF and baselines on CMU-MOSI and CMU-MOSEI datasets. Baselines from

[60]

CMU-MOSI CMU-MOSEI

Models MAE ↓ Corr↑ Acc-2↑ F1↑ MAE ↓ Corr↑ Acc-2↑ F1↑
TFN 0.925 0.662 78.3 / 80.2 78.2 / 80.1 0.570 0.716 81.0 / 82.6 81.1 / 82.3

LMF 0.931 0.670 77.5 / 80.1 77.3 / 80.0 0.568 0.727 81.3 / 83.7 81.6 / 83.8

MFN 0.951 0.665 77.9 / 80.0 77.8 / 80.0 0.575 0.720 81.8 / 84.0 81.9 / 83.9

MFM 0.948 0.664 77.7 / 80.0 77.7 / 80.1 0.580 0.722 80.3 / 83.4 80.7 / 83.4

MulT 0.918 0.685 79.0 / 80.5 79.0 / 80.5 0.564 0.732 81.3 / 84.0 81.6 / 83.9

MAG-BERT 0.730 0.789 82.4 / 84.6 82.2 / 84.6 0.558 0.761 81.9 / 85.1 82.0 / 84.3

MISA 0.752 0.784 81.8 / 83.50 81.7 / 83.5 0.550 0.758 81.6 / 84.3 83.8/85.3

Self-MM 0.731 0.785 82.7 / 84.9 82.6 / 84.8 0.540 0.763 82.6 / 85.2 82.6 / 85.2

MMIM 0.738 0.781 83.0 / 85.1 82.9 / 85.0 0.547 0.752 81.9 / 85.1 82.3 / 85.0

MTMD 0.705 0.799 84.0 / 86.0 83.9 / 86.0 0.531 0.767 84.8 / 86.1 84.8 / 86.1

MCL-MCF(Ours) 0.692† 0.799† 84.9 / 87.3† 84.7/87.2† 0.536† 0.767† 84.2/86.4† 84.4/86.3†

TABLE 4: Results on CH-SIMS. All models use
bert-base-chinese as the text encoder; † means the

corresponding result is significantly better than the
Self-MM with p-value < 0.05 based on paired t-test.

Models MAE ↓ Corr ↑ Acc-2 ↑ F1 ↑

TFN 43.22 59.1 78.38 78.62

LMF 44.12 57.59 77.77 77.88

MFN 43.49 58.24 77.90 77.88

MulT 45.32 56.41 78.56 79.66

Self-MM 42.50 59.52 80.04 80.44

MCL-MCF(Ours) 41.00† 58.88† 81.84† 81.82†

(strongly negative) to +3 (strongly positive).
The CMU-MOSEI [62] dataset is a large-scale MSA and
emotion recognition dataset consisting of 23,454 YouTube
monolog video clips covering 250 different topics from 1,000
different speakers. The utterance dataset is composed of ran-
domly selected review topics in various movies, annotated
with sentiment scores between -3 and +3 and 6 different
sentiment categories.
The CH-SIMS [63] dataset is a Chinese MSA dataset that
not only contains unified multimodal annotations but also
introduces independent unimodal annotations. The dataset
consists of 2281 refined video clips from different movies,
TV series and variety shows. Each sentiment score ranges
from -1 (strongly negative) to 1 (strongly positive).

We use the same set of metrics that have been pro-
posed and compared before the mean absolute error (MAE),
which is the average mean absolute difference between
the predicted and true values; Pearson correlation (Corr),
which measures the degree to which predictions are skewed;
binary classification accuracy (Acc-2); and F1 scores, which
are calculated for non-negative/negative results.

5.2 Baselines
To fully validate the performance of MCL-MCF, we
compare our model with several baselines. This earlier

work is included, as are recent and more competitive
baselines. The models we compare are as follows:

• TFN [15] is a tensor fusion network that uses a
multidimensional tensor to capture interactions
between different modalities, including unimodal,
bimodal, and trimodal modalities. This is achieved
by calculating the outer product between the
different modalities within the tensor.

• LMF [23] is a low-rank multimodal fusion approach
that involves decomposing stacked high-rank
tensors into multiple low-rank factors, followed by
an efficient fusion process using these factors.

• MFM [64] is a multimodal factorization model that
connects an inference network and a generative
network with intermediate modality-specific factors
to facilitate the fusion process of reconstruction and
recognition losses.

• MFN [65] is a memory fusion network that leverages
LSTM-encoded information from each modality
separately and a virtual attention network with
multiview gated memory to explicitly account for
cross-view interactions.

• MulT [27] is a multimodal transformer that builds a
network of unimodal and cross-modal transformers
and a complete fusion process.

• MAG-BERT [16] MAG is fine-tuned on specific
datasets but struggles with multimodal language
tasks. It introduces the multimodal adaptation gate
for BERT and XLNet, enabling them to incorporate
visual and acoustic data.

• MISA [57] represents item patterns in two distinct
subspaces, modality-invariant and specific, to
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provide a holistic view of multimodal data.

• Self-MM [66] is a self-supervised multitask learning
approach that automatically generates unimodal
labels weighted by multimodal labels to learn
the similarities and differences between different
modalities.

• MMIM [39] is a multimodal mutual information
maximization method that maintains task-related
information by maximizing unimodal input pairs
and mutual information between multimodal fusion
outputs and unimodal inputs.

• MTMD [60] views the learning process of modalities
as multiple subtasks and introduces an innovative
approach called multitask momentum distillation to
narrow the gap between different modalities. This
method employs a unimodal momentum model to
consider modality-specific knowledge and utilizes
adaptive momentum fusion factors in learning ro-
bust multimodal representations.

5.3 Implementation Details and Results
In all experiments, we utilized unaligned data provided by
the open source [39]. The training set, validation set, and test
set divisions for the three datasets are shown in Table 2. We
used a single RTX 3090 for training. For unimodal feature
extraction from text data, we use pre-trained BERT models
with bert-base-uncased and bert-base-Chinese files, with an
output dimension of 786. For sound and vision data, we use
unidirectional LSTMs with an output dimension of 64 for
feature extraction. In the TCF module, for the three datasets
CMU-MOSI, CMU-MOSEI, and CH-SIMS, we use a convo-
lution kernel size of 3×3 for the three-layer two-dimensional
convolutional neural network, a step size of 1, and nu-
merous channels of [(1, 4), (4, 6), (6, 1)], [(1, 2), (2, 4), (4, 1)],
and [(1, 4), (4, 7), (7, 1)], respectively. We use Xavier-normal
for parameter initialization. The learning rate hyperparam-
eters for the three datasets are 1e-4. On the CMU-MOSI
dataset, α, β, and γ are all set to 0.05. On the CMU-MOSEI
dataset and CH-SIMS dataset, α, β, and γ are all set to 0.02.
The results of our model are shown in Table 3. Compared
with previous works, our model achieves state-of-the-art
results with multiple indicators.

5.4 Experiments Results Summary
Table 3 and Table 4 present the experimental results of the
MCL-MCF model. Our model achieves competitive results
with both English and Chinese datasets (note that this
assessment does not take into consideration comparisons
of our model with excellent models that have significant
differences in original data preprocessing and that are not
publicly available). Across various metrics, including ac-
curacy, correlation (Corr), and F1 score, our model out-
performs the current state-of-the-art models. This suggests
the effectiveness of our proposed method for mitigating
the heterogeneity of multimodal features. Further feature
analysis will be needed to provide deeper insights into this
aspect.

TABLE 5: Ablation study of MCL-MCF on CMU-MOSI;
MCL-F, MCL-S, and MCL-T respectively represent the

first-level contrastive learning, the second-level contrastive
learning and the third-level contrastive learning in the

MCL module.

Description MAE ↓ Corr ↑ Acc-2 ↑ F1 ↑

MCL-MCF 0.692 0.799 0.849 / 0.873 0.847 / 0.872

w/o MCL-F 0.720 0.782 0.836 / 0.859 0.834 / 0.858

w/o MCL-S 0.727 0.783 0.8418 / 0.862 0.839 / 0.862

w/o MCL-T 0.721 0.783 0.838 / 0.8581 0.836 / 0.857

w/o MCL 0.727 0.791 0.833 / 0.855 0.832 / 0.854

w/o MCF 0.717 0.793 0.841 / 0.862 0.838 / 0.861

5.5 Ablation Study

To substantiate the effectiveness and usefulness of MCL-
MCF, we conducted a series of ablation experiments and
random seed sampling experiments with the CMU-MOSI
dataset. The results from different ablation configurations
are presented in Table 5.

Initially, we performed hierarchical ablation experiments
on multi-level contrastive learning. Table 5 shows the first-
level, second-level, and third-level contrastive learning re-
sults. The experimental results were lower than those with-
out ablation experiments, indicating that single-level con-
trastive learning is not enough to alleviate the heterogeneity
differences between different layers of multiple modalities.
This proves that multi-level contrastive learning methods
complement each other, and contrastive learning works
simultaneously at each level to alleviate the heterogene-
ity between multimodal fusion features at different levels.
After completely ablating multi-level contrastive learning,
only the feature extraction and convolution fusion modules
remained in the model. The experimental results indicate
that the fusion method does not have the ability to alleviate
the heterogeneity difference between multimodal features,
and the fusion ability of multi-layer convolution without
the help of multi-level contrastive learning is hindered by
the heterogeneity between multimodal features. Under the
action of multi-level contrastive learning, the heterogeneity
is greatly reduced to promote multi-layer convolution fu-
sion. To validate the usefulness of the model, we randomly
sampled 10 seeds and calculated the variance for each
metric in the ablation experiments. The small fluctuations
in the variance of each metric indicate the effectiveness of
the ablation experiments and demonstrate that the model
exhibits good stability and usefulness.

Furthermore, we conducted an ablation experiment
pertaining to the multi-layer convolution fusion module
for multimodal fusion, where linear layers were utilized
instead of multi-layer convolution. The experimental
outcomes indicate that multi-level contrastive learning
can alleviate heterogeneity among multimodal features,
thereby assisting the fusion technique in achieving
commendable results. This further underscores that even
in the absence of intricate fusion methodologies, as long as
heterogeneity among multimodal features is reduced, the
model can achieve satisfactory outcomes. Thus, multi-level
contrastive learning serves as the foundation of MCL-MCF,
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Fig. 3: t-SNE [67]visualization of multimodal representation in the embedding space on CMU-MOSI. a, b, c, d, e, and f
correspond to the visualizations of ablation experiments on the MCL.

with optimal experimental results stemming from the
amalgamation of multi-level contrastive learning and
multimodal fusion through multi-layer convolution.

5.6 Visualization
To verify whether multi-level contrastive learning can sig-
nificantly enhance the effectiveness of multimodal fusion,
we conducted visualization experiments with the CMU-
MOSI dataset. By visualizing the data feature vectors of the
last layer of the model through dimensionality reduction,
we used the t-SNE [67] algorithm to obtain 2D features for
visualization. As depicted in 3, all the plots feature the MCF
module, and they showcase the visualization outcomes of
level-by-level ablation experiments conducted on multi-
level contrastive learning. (a) corresponds to the absence of
any contrastive learning at any level, relying solely on MCF
for the distribution of features, which results in a relatively
disordered feature distribution. (b) demonstrates the inclu-
sion of first-level contrastive learning atop (a), leading to
a considerably clearer feature distribution. (e) incorporates
both first-level and second-level contrastive learning; the
feature distribution is akin to that of (b), with features
from same-polarity samples clustering together. (f) inte-
grates first-level, second-level, and third-level contrastive
learning, revealing a discernible shift in feature distribution
compared to (e), where the distribution of features from
same-polarity samples becomes more scattered. (c) and (d)
show the visualizations of ablation experiments carried out
on first-level and second-level contrastive learning, respec-
tively. The distributions of their features show relatively
minor deviations from that of (e). Upon analyzing (a),

(b), (e), and (f), despite the addition of an extra layer of
contrastive learning in (f), its feature distribution does not
exhibit a markedly denser pattern compared to that of (e).
This observation suggests that the multi-level contrastive
learning (MCL) approach not only decreases the distances
between same-polarity sample features but also decreases
the distances between different-polarity sample features but
also has the ability to alleviate heterogeneity among mul-
timodal features. In the context of the analysis of (c), (d),
and (e), the division of the fusion levels into early, middle,
and late phases appears to be a reasonable approach. Op-
timal results are achieved when all three levels are active,
thereby maximizing the alleviation of heterogeneity among
modalities.

5.7 Loss analysis

To investigate the model’s loss profile, we present the results
of a 200-epoch run, as depicted in Figure 5. In general,
all the losses converge well without encountering conflicts,
indicating the integrity of the model design. The trends
of label loss and overall loss are similar, rapidly reaching
convergence, suggesting that alleviating heterogeneity in
the multimodal fusion process is immensely beneficial for
multimodal integration. After the convergence of the label
loss and overall loss, the other three losses continue to
decrease. However, the model’s accuracy does not improve
with the reduction of these losses. This is attributed to
the excessive mitigation of heterogeneity leading to the
loss of private information in each modality, which plays
a crucial role in emotion analysis recognition. Therefore,
in the process of multimodal fusion, we opt for shallow-
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Fig. 4: Visualization of the impact of weight changes in multi-level contrastive learning on accuracy, where α, β, and γ are
the weights for first-level, second-level, and third-level contrastive learning, respectively. (a) shows the variation in α

when β and γ are held constant at 0.05. (b) illustrates the change in β when α and γ remain fixed at 0.05. (c) shows the
fluctuation of γ with α and β fixed at 0.05. (d) involves extracting some data from (a), (b), and (c).

level features to facilitate multimodal integration, thereby
preventing the loss of private information.

6 FURTHER ANALYSIS

6.1 Case Study

Four samples were randomly selected from CMU-MOSI,
MCL-MCF and MMIM to predict these four samples
(MMIM was trained to achieve the best performance ac-
cording to the open source code), and the results are shown
in Table 6. From the four samples in the table, it can be
seen that MCL-MCF is better than the current optimal
MMIM model in the prediction of positive samples, negative
samples, and neutral samples.

6.2 Weight Analysis

For further analysis of the MCL module, Figure 4 pro-
vides an investigation into the variations in the weights α,
β, and γ. As their respective weights increase, noticeable

fluctuations are observed in (a), (b), and (c), all exhibiting
an overall decreasing trend. Unilateral improvements in α,
β, and γ disrupt the balance of constraints and lead to a
decrease in model performance. As seen in (d), α, β, and γ
collectively attain their optimum when equal and set at 0.05,
with subsequent variations failing to surpass this outcome.
The insights from both Figure 3 and Figure 4 affirm that each
layer of multi-level contrastive learning is indispensable.
Balancing the weights of hierarchical contrastive learning
is also essential.

6.3 Positive and Negative Pair Analysis

To further substantiate the validity of our framework de-
sign, we devised three distinct configurations for positive
and negative sample pairs in the context of contrastive
learning, as delineated in Table 7. Herein, A, B, and C rep-
resent three respective types, with comprehensive explana-
tions of their nuances provided in Table 7. Our experiments
encompassed the exploration of these three distinct design
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TABLE 6: In MMIM and MCL-MCF, the left of the “/” is predict value,the right is truth value .

Text Visual Acoustic MMIM MCL-MCF

(A):Its completely different from anything we’ve ever seen
him do before Smile Slightly rising tone -0.0637/0.4000 0.4004/0.4000

(B):And she was kind of wierd during twilight Look up
Turn head

Peaceful tone
Slight pause -0.6119/-1.0000 -1.0004/-1.0000

(C)And I was pretty open to to it being good Raise eyebrows
Turn head

Slightly rising tone
Slight pause 1.4106/0.6000 0.5996/0.6000

(D):Because I sure didn’t see the end coming Glance Peaceful tone -0.1139/0.0000 0.0002/0.0000
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Fig. 5: The first loss, second loss, and third loss correspond
to the contrastive learning losses at the first, second, and
third level, respectively. The label loss represents the loss

associated with labels, while all losses encompass the
overall loss of the entire model.

TABLE 7: Positive sample pairs with different modalities
within the same sample (PSA), positive sample pairs with

the same sentiment across different samples (PSB), negative
sample pairs with the same sentiment (NSA), negative

sample pairs without the same sentiment (NSB). A, B, and
C represent three different designs for positive and

negative sample pairs, respectively.

A B C

PSA ✓ ✓ ×
PSB × × ✓

NSA ✓ × ×
NSB × ✓ ✓

approaches, and the ensuing results are presented in Table
8. Analysis of the results (A, B, C) reveals that employing
different modalities within the same sample as positive
pairs in contrastive learning yields superior outcomes. This
is attributed to their intrinsic suitability as positive pairs, a
phenomenon substantiated by prior research demonstrating
their efficacy [40]. [42] Conversely, employing samples with
identical emotional expressions as positive pairs manifests
marginally diminished results. This discrepancy may arise
from the substantial inherent differences among samples,
despite sharing identical emotional attributes. The com-

TABLE 8: Experimental results of three different positive
and negative sample pairs on CMU-MOSI.

MAE ↓ Corr ↑ F1 ↑ Acc-2 ↑

A 0.692 0.799 84.7 / 87.2 84.9 / 87.3

B 0.728 0.798 84.4 / 86.5 84.6 / 86.7

C 0.769 0.790 83.8 / 86.2 83.9 / 86.2

mendable outcomes observed across all three ABC exper-
iments underscore the overarching efficacy and rationale
behind our integrated design.

6.4 Comparative Analysis

Four graphs are shown in Figure 6: (a) and (b) are the
accuracy distributions on three public datasets, while (c)
and (d) are the ACC-2, Corr, and MAE distributions under
different conditions on CMU-MOSI.

In (a), we can see that the accuracy rate of CMU-MOSI
and CMU-MOSEI is NaN under the condition of (a) a
learning rate of 1e-3, and the learning rate of 1e-3 in (c)
results in NaN values not only for accuracy but also for Corr
and MAE. This shows that the MCL-MCF model is sensitive
to the learning rate. In contrast, in (b), only the CMU-
MOSEI dataset has an accuracy of NaN when the batch size
is 8 or 16, while the other two datasets are normal. The
MCL-MCF model is also sensitive to the batch size. Under
the condition of using multi-level contrastive learning, the
model should be given a larger batch size to provide more
negative samples to avoid model collapse. As the batch size
increases in (b), the accuracy of the MCL-MCF model on the
three datasets continues to increase. From (d), we can see
that as the batch size increases, ACC-2 and Corr increase,
while MAE decreases. This is consistent with the notion
that the more negative samples given to the contrastive
learning model, the better it is. It also shows that the multi-
level contrastive learning module in the MCL-MCF model is
effective in promoting multimodal fusion. Due to hardware
limitations, a larger batch size could not be tested. The four
graphs also show that the limitation of MCL-MCF is that it
requires considerable memory and is very sensitive to the
learning rate hyperparameters.

6.5 Accuracy Analysis

To investigate the generalizability and sensitivity of the
model to different samples, we visualized the confusion
matrices of the MCL-MCF model in three datasets (CMU-
MOSI, CMU-MOSEI, and CH-SIMS) for three-class classifi-
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(a) Accuracy distribution of three public datasets under
different learning rate conditions.
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different batch size conditions.
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(d) The distribution of ACC-2, Corr, and MAE under
different batch size conditions with the CMU-MOSI dataset.

Fig. 6: (a) and (b) show the accuracy of different datasets under the same batch size and learning rate conditions; the other
conditions are the same. (c) and (d) are the learning rates and batch sizes with the CMU-MOSI dataset, respectively, and
the ACC-2, Corr, MAE, and other conditions are the same. In (a), the accuracy values of CMU-MOSI and CMU-MOSEI

under the condition of 1e-3 learning rate are Nan. In (b), the accuracy rate of CMU-MOSEI under the condition of an 8,16
batch size is Nan. In (c), the values of Acc, Corr and the MAE of CMU-MOSI under the condition of 1e-3 learning rate is

Nan.

cation, as shown in Figure 7 (a, c, d). To facilitate compari-
son, we also visualize the three-class confusion matrix of the
MMIM [39] model on CMU-MOSI, as shown in Figure 7 (b).

By comparing (a) and (b), we can conclude that the MCL-
MCF model outperforms the MMIM model on three types
of samples. It also performs well in processing positive and
negative samples in the CMU-MOSI dataset but not neutral
samples. From (a) and (c), we can infer that MCL-MCF may
not handle neutral samples from CMU-MOSI well because
there are too few neutral samples in the dataset, which
makes it difficult for the model to be sufficiently trained.
From (a), (c), and (d), we can see that MCL-MCF has good
generalizability, as it performs well from the small CMU-

MOSI dataset to the large CMU-MOSEI dataset and from
the English CMU-MOSI dataset to the Chinese CH-SIMS
dataset.

Overall, multi-level contrastive learning can handle
the heterogeneity between multimodal data features well,
thereby helping the model achieve excellent results and
good generalizability.

6.6 Multimodal “image” Analysis
To validate the efficacy of two-dimensional convolution
applied to multimodal “images” generated by the outer
product of two modalities and whether subsequent two-
dimensional convolutional feature extraction can yield a
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(a) Three-category confusion matrix visualization of MCL-MCF
on CMU-MOSI.
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(b) Three-category confusion matrix visualization of MMIM on
CMU-MOSI.
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(c) Three-category confusion matrix visualization of MCL-MCF
on CMU-MOSEI
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(d) Three-category confusion matrix visualization of MCL-MCF
on CH-SIMS

Fig. 7: (a,c,d) represent the three-class visualization confusion matrix for MCL-MCF, and b represents the three-class
visualization confusion matrix for MMIM. (a,c,d) compare the performance and generalizability of MCL-MCF on three

datasets, while (a,d) compare the sensitivity of MCL-MCF and MMIM to sample categories.

robust fusion feature representation, we examined scenarios
involving both single-channel and multichannel processing.
We obtained three one-channel multimodal “images” from
the outer products of ht, ha, and hv , which are the same as
the inputs of the contrastive learning module.

We stack the three one-channel multimodal “image” to
generate a three-channel multimodal “image”, which were
then directly sent to ResNet18, ResNet34, ResNet50, a vision
transformer (Vit) [68] and masked autoencoders (MAE) [69],
but three single-layer convolutions, which use the three
single-channel convolutions in this article. The objective
was to assess the validity and effectiveness of convolution
on multimodal “image”. Table 9 presents the results of
this analysis. ResNet [70] series models consistently out-
perform previous models across multiple metrics, confirm-
ing the strength of employing three-channel multimodal
“images” for two-dimensional convolution operations. The

three single-layer convolutions also exhibited promising
outcomes, supporting the feasibility and effectiveness of
applying two-dimensional convolution to single-channel
multimodal “images”. The ResNet18, ResNet34, ResNet50
results and the three single-layer convolutions underscored
the effectiveness of convolution in extracting local fea-
tures from the multimodal ”image”. However, importantly,
deeper convolutional layers did not necessarily correlate
with superior performance. From the Vit and MAE results,
we make two hypotheses: 1) the three-channel multimodal
“image” can contain redundant and conflicting information
unsuitable for direct global feature extraction, and 2) the
timing of the three-channel multimodal “image” obtained
from the outer product may be damaged to a certain extent,
making it unsuitable as a model input for the transformer
or Vit architecture.

Multimodal “images” themselves are obtained through
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TABLE 9: MAE∗ means masked autoencoders instead of evaluation indicators; Results of ResNet18, ResNet34, ResNet50,
vision transformer (Vit) [68] and masked autoencoders (MAE) [69] on CMU-MOSI, all of which input three-channel

multimodal “image”; TSLC means that three single-channel multimodal “image” is calculated by 1-channel
two-dimensional convolution. TSLC is short for Three single layer convolutions; In Acc-2 and F1-Score, the left of the “/”

is calculated as negative/non-negative and the right is calculated as negative/positive, TPs represents trainable
parameters.

Models∆ MAE↓ Corr↑ Acc-2↑ F1↑ TFLOPs/M TPs/M

ResNet18 0.834 0.773 84.84 / 86.59 84.71 / 86.51 596.08 11.82

ResNet34 0.765 0.789 84.69 / 86.43 84.65 / 86.44 1201.69 21.93

ResNet50 0.777 0.776 83.82 / 86.13 83.64 / 86.03 1351.30 25.69

Vit 0.825 0.763 82.94 / 85.52 82.67 / 85.35 11921.54 184.34

MAE∗ 1.125 0.491 72.16 / 75.00 71.26 / 74.37 20331.97 329.34

TSLC 0.735 0.794 83.38 / 86.13 83.08 / 85.94 26.52 24.77

the interaction of single-modal fine-grained details contain-
ing rich interactive information. However, some interactions
between elements are meaningless, leading to considerable
redundancy similar to that of visual images. Tremendous
success has already been achieved with local extraction
through convolution in the image domain. Through ex-
periments, it has been found that performing local infor-
mation extraction on multimodal “images” is also very
effective. Although significant success has been achieved
with transformer architecture models in the image domain,
our experimental results suggest that multimodal “image”
is not well suited for direct input into models based on
the transformer architecture. The reason is that multimodal
“images” obtained from different modalities contain more
redundancy and conflicting emotional information than vi-
sual images. These conflicts can affect the model’s analysis
of emotions. Therefore, local convolutional networks are
more suitable for multimodal “images”. In the future, a
combination of both approaches can be explored to achieve
a fusion of local and global features. In the experiments
with multimodal “image”, we utilized the built-in ResNet
series models in PyTorch. The ResNet series models have
an input size of 128×128×3. For ViT, the input size is also
128×128×3, with a patch size of 16×16 and 6 layers. MAE
is a pre-trained MAE-based model with an input size of
224×224×3 and a patch size of 16×16. To further contrast
the performance of global and local models, we established
a standardized encoding environment, concentrating exclu-
sively on the computation metrics following the encoding
process. A comparison of the accuracy results of the global
models (VIT and MAE) and local models (ResNets and
TSLC) indicates that multimodal “images” are more redun-
dant. Global models have a significantly larger parameter
count than local models, which paradoxically exacerbates
the introduction of redundant noise, leading to a decrease
in the results. This suggests that local feature aggregation
is more effective and highlights the rationale behind TCF
design.

Multimodal “images” overcome the one-dimensional
limitation of previous multimodal fusion methods, improve
multimodal fusion to a two-dimensional level, and enable
the direct application of excellent models from the image
field, greatly expanding the range of multimodal fusion
methods. We believe this work can inspire creativity in the

field of multimodal learning and MSA in the future.

7 CONCLUSION

This paper introduces the MCL-MCF framework as a solu-
tion to mitigate the heterogeneity among multimodal fea-
tures during the process of multimodal feature fusion, aim-
ing to enhance fusion effects. Fusion is considered a gradual
process, with MCL implementing hierarchical processing to
mitigate heterogeneity across various feature levels. In the
process of obtaining advanced features, we designed the
tensor convolution fusion (TCF) module and found through
experiments that performing two-dimensional convolution
operations conducted on multimodal “image” can yield
excellent advanced features. To simulate fusion as a progres-
sive process, the MCF is designed to employ hierarchical
fusion. We found through our experiments that the two are
complementary and thus can be combined for better per-
formance. Ultimately, our experiments with three datasets
show that the method achieves state-of-the-art performance
across the English and Chinese languages, as well as with
both small and large datasets. The analysis of the visualiza-
tion experiments shows that our model alleviates the het-
erogeneity among multimodal features, improves the fusion
effect of fusion methods, and has good generalizability.

In future work, we intend to explore the application
of MCL-MCF in different multimodal learning methods.
The multimodal “images” overcome the limitations of one-
dimensional and two-dimensional methods. In the future,
we will further study multimodal “images”. While high-
level features extracted from multimodal “images” are ef-
fective for contrastive learning, they consume considerable
memory, and the model becomes highly sensitive to the
learning rate. The MAE and Vit do not handle multimodal
“images” well. Discovering how to solve these problems
remains an attractive direction for future research.
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